
ECE 220 Computer Systems & Programming

Arrays

Arrays

Array
§ A list of values of uniform type arranged sequentially in memory
§ Example: a list of telephone numbers
§ Expression a[4] refers to the 5th element of the array a

2

Arrays

§ Allocate a group of memory locations: character string, table of numbers

§ Declaring and using Arrays
int grid[10] = {0,1,2,3,4,5,6,7,8,9};

grid[6] = grid[3] + 1;

int i;
for(i=0;i<2;i++)

{

grid[i+1] = grid[i] + 2;

}

3

Array Layout

char char char char char char

char x[6]

x[3]

int int int

int arr[3]

arr[2]

Pointer Review

Pointer
§ Address of a variable in memory
§ Allows us to indirectly access variables (in other words, we can talk

about its address rather than its value)
§ Pointers carry type information

& - address operator: ‘&x’ returns the address of variable x
* - indirection (dereference) operator: ‘*ptr’ returns the value pointed to by ptr

2

Pointer Arithmetic

char char char char char char

char *c c+3

int int int

int *p p+2

Pointer/Array Duality

char char char char char char

char *c = x c+3

char x[7]

c[4]

x[4]

x+3

char
*(x+5)

*(c+6)t

x

Duality Limits

char char char char char char

char *c = x c+3

char x[7]

c[4]

x[4]

x+3

char
*(x+5)

*(c+6)t

x

x++ Array identifiers are not l-values

Passing Array as Arguments

C passes arrays by reference
§ the address of the array (i.e., address of the first element) is written to

the function's activation record
§ otherwise, would have to copy each element

int main(){
int array[10];
int result;
result = average(array);
return 0;

}

int average(int array[10]);
/* int average(int array[]); */
/* int average(int *array); */ 4

