
ECE 220 Computer Systems & Programming

Introduction to C

C – Higher Level Language

Gives symbolic names to values
§ don’t need to know which register or memory location

Provides abstraction of underlying hardware
§ operations do not depend on instruction set
§ example: can write “a = b * c”, even though

LC-3 doesn’t have a multiply instruction
Provides expressiveness

§ use meaningful symbols that convey meaning
§ simple expressions for common control patterns (if-then-else)

Enhances code readability
Safeguards against bugs

§ can enforce rules or conditions at compile-time or run-time

5

Basic C Program

§ Comment
§ Preprocessor directives
§ Main function
§ Variable declaration (type, identifier, scope)
§ I/O
§ Return value
§ Statement termination 6

/* My first program in C. It will print the value of PI
and exits. */
#include <stdio.h>
#define PI 3.1416f
int main()
{

float pi = PI;
printf(“pi=%f\n”, pi);
return 0;

}

Characteristics of C

C is a procedural language
§ the program specifies an explicit sequence of steps to follow to produce

a result; program is composed of functions (aka subroutines)
C programs are compiled rather that interpreted

§ a compiler translates a C program into machine code that is directly
executable on hardware

§ interpreted programs (e.g. MATLAB) are executed by another program,
called interpreter

C programs are statically typed
§ the type of each expression is checked at compile time for type

inconsistencies (e.g., int x = 3.141)

7

Compiling a C Program

Preprocessor
§ macro substitution
§ conditional compilation
§ “source-level” transformations

Ø output is still C
Compiler

§ generates object file
Ø machine instructions

Linker
§ combine object files

(including libraries)
into executable image

ü gcc compiler – invoke all these tools

C
Source and
Header Files

C Preprocessor

Compiler

Source Code
Analysis

Target Code
Synthesis

Symbol Table

Linker

Executable
Image

Library
Object Files

8

Variables in C

§ int (long, long long, unsigned), can also use hex representation 0xD
§ float (double)
§ char (character)
§ const (constant qualifier)
§ unsigned (unsigned qualifier)

Scope: local vs. global

Storage class: static vs. automatic

9

Expressions and Statements

§ Expressions evaluate to something. Examples:
§ 1
§ x
§ x*y

§ Statements are building blocks of a C program. Examples:
§ x = 3;

Operators (1/8): Assignment

=
Lvalues
Evaluates to

Operators (2/8): Relational

> < >= <= == !=

Warning: = != ==

Operators (3/8): Arithmetic

+ - * / %

Operators (4/8): Bitwise

| & ^ ~ << >>

Operators (5/8): Logical

|| && !

Operators (6/8): Increment/Decrement

++ --

Operators (7/8): Ternary / Conditional

?:

Usage:
expr ? ift : iff

Operators (8/8): Compound Assignment

+= -= *= /= %=

&= |= ^= <<= >>=

Usage:
lval += expr

Precedence and Associativity (see Table 12.5)

10

