
ECE 220 Computer Systems & Programming

Yih-Chun Hu
adapted from material by Profs. Yuting Chen, Sanjay Patel, Volodymyr Kindratenko

2

Ways to Support I/O

• Port-Mapped I/O: separate address space,
separate instructions to access I/O devices
– Example: x86 IN, OUT instructions

• Memory-Mapped I/O: map I/O devices to regular
memory, access with normal memory
instructions

3

Key Concept: Abstraction

4

Create building blocks that are tightly specified.
Abstract way their details to a simple interface.
And then use them to build more
complex things.

Then optimize the building blocks like crazy…

I/O is for interfacing between
the physical world and digital
world.

So what is the world’s most
commonly used digital interface?

….at least between a
human and a digital system.

LC3 Memory: Memory mapped device registers
Address Contents Comments
x0000 ; system space
…
x3000 ; user space

; programs
; and data

…

xFE00 KBSR ; Device register

xFE02 KBDR

xFE04 DSR

xFE06 DDR
…
xFFFF

These are the memory addresses to
which the device registers (KBDR, etc.)
are mapped

But the device registers physically are
separate from the memory.

Memory-mapping device registers is a
very common way to design interfaces
for computing systems

Circuit for memory mapped Input

0
1

2

Conventional memory access: LD DR, addr
o MAR←addr
o MDR←MEM[MAR]
o DR←MDR

Memory-mapped input access: LD DR, xFE02

o MAR←xFE02

o MDR←KBDR

o DR←MDR

Basics of Interface Design

• Producer of data (finger at touchscreen) is working
much much more slowly than consumer of that data
(messaging app)

• We need to account for asynchronous operation

• We will use a simple consumer/producer handshake

Handshaking using KBDR and KBSR

• When a char is typed by user in the keyboard
– Its ASCII code is placed in KBDR[0:7]
– KBSR[15] is set to 1 (ready bit)
– Keyboard is disabled

• When KBDR is read by CPU
– KBSR[15] is set to 0
– Keyboard is enabled

KBSR
KBDR

15 8 7 0

1514 0

keyboard data

ready bit

This is part of the keyboard hardware.

Reading Input the right way

KBSR

KBDR
15 8 7 0

15 14 0

keyboard data

ready bit

Circuit for memory mapped output

Conventional write: ST SR, addr
o MAR←addr
o MDR←SR
o Mem[MAR]ßMDR

Memory-mapped input access: ST SR, xFE06

o MAR←xFE06

o MDR←SR

o DDR←MDR

Problem of asynchrony, again!

Handshaking using DDR and DSR

• When display is ready for another char
– DSR[15] is set to 1 (ready bit)

• When new char is written to DDR
– DSR[15] is set to 0 and DDR[7:0] is displayed
– Any other chars written to DDR are ignored

DSR
DDR

15 8 7 0

1514 0

output data

ready bit

This is part of the display hardware.

Sending Character to Display

DSR

DDR
15 8 7 0

15 14 0

output data

ready bit

But wait…
• What’s the system doing while it waits for

me to touch the next key?
[hint: BRzp START…]

• If it takes me 0.5 sec, that’s about 1 billion
operations

• How can we do something useful?

