ECE 220 Computer Systems & Programming

Yih-Chun Hu
adapted from material by Profs. Yuting Chen, Sanjay Patel, Volodymyr Kindratenko

ECE ILLINOIS MirriNoOTS

ECE ILLINOIS MirriNoOTs

Ways to Support |/O

e Port-Mapped I/O: separate address space,
separate instructions to access /0 devices

— Example: x86 IN, OUT instructions
 Memory-Mapped I/O: map I/O devices to regular

memory, access with normal memory
instructions

ECE ILLINOIS MirriNoOTs

Key Concept: Abstraction

Create building blocks that are tightly specified.
Abstract way their details to a simple interface.
And then use them to build more

complex things.

Then optimize the building blocks like crazy...

ECE ILLINOIS MirriNoOTs

(==)

eccee T 9:41 AM 100%
I/O is for interfacing between New iMessage Cancel
the phySical World and dlgltal To: Jane Appleseed, Erin Steed & 3 more...
world.
So what is the world’s most
commonly used digital interface?
....at least between a
human and a digital system.

What is everyone doing this
#1 weekend? Send
ECE ILLINOIS el @ | — dicciNnors

LC3 Memory: Memory mapped device registers

Address Contents Comments
x0000 ; system space
x3000 ; user space

; programs

; and data
xFEOO KBSR ; Device register
xFEO2 KBDR
xFEO4 DSR
xFEO6 DDR

I xFFFF

These are the memory addresses to
which the device registers (KBDR, etc.)
are mapped

But the device registers physically are
separate from the memory.

Memory-mapping device registers is a
very common way to design interfaces
for computing systems

ILLINOIS

Circuit for memory mapped Input

GateMDR .
ae Conventional memory access: LD DR, addr

o MAR&addr
o MDR&MEM[MAR]
o DR&MDR

R.W /REA
) A16 INPUT

ADDR . Memory-mapped input access: LD DR, xFE02
X16 CONTROL MEMORY |KBSR| |KBDR|
LOGIC o MAR&XFEO2

2
2 Iﬁ; o MDR<KBDR

MEML.EN, READ
0
1

2
INMUXK<—

o DR<&MDR

ECE ILLINOIS MirriNoOTs

Basics of Interface Design

* Producer of data (finger at touchscreen) is working
much much more slowly than consumer of that data

(messaging app)
* We need to account for asynchronous operation

* We will use a simple consumer/producer handshake

ECE ILLINOIS MirriNoOTs

Handshaking using KBDR and KBSR

keyboard data

15 8 7

1 * JKBDR

1514 0

ready bit ——t [T KBSR

 When a charis typed by user in the keyboard
— Its ASCII code is placed in KBDR[0:7]
— KBSR[15] is set to 1 (ready bit)
— Keyboard is disabled
* When KBDR is read by CPU This is part of the keyboard hardware.
— KBSR[15] issetto O
— Keyboard is enabled

ECE ILLINOIS MirriNoOTs

Reading Input the right way

keyboard data
_ﬁ KBDR
ready it ———+ I KSR

ECE ILLINOIS MirriNoOTs

Circuit for memory mapped output

16

A
16 v
| MD |<1—LD MDR MAR |<—LD.MAR
R.W/ TER
% 3 16
ADDR
N CONTROL
LOGIC
2
716 MEM.EN, Wit

A— GateMDR

16

4

OUTPUT

MEMORY

LD.DDR

INMUX

ECE ILLINOIS

Conventional write: ST SR, addr
o MAR<addr

o MDR<&SR

o Mem[MAR]€MDR

Memory-mapped input access: ST SR, xFEO6
o MAR<&XFEO6
o MDR&SR

o DDR<MDR

ILLINOIS

Handshaking using DDR and DSR

output data

1514 0

ready bit—— [T DSR

 When display is ready for another char
— DSR[15] is set to 1 (ready bit)

e When new char is written to DDR

— DSR[15] is set to 0 and DDR[7:0] is displayed

— Any other chars written to DDR are ignored
This is part of the display hardware.

ECE ILLINOIS MirriNoOTs

Sending Character to Display

i output data

7 0
] | DDR
15 14 0
ready bit ——+ I DsR

ECE ILLINOIS MirriNoOTs

But wait...

me to touch the next key?

l What’s the system doing while it waits for
- [hint: BRzp START..]

* If it takes me 0.5 sec, that’s about 1 billion
operations

 How can we do something useful?

ECE ILLINOIS MirriNoOTs

