ECE 220

Lecture x0016 - 04/11
Templates & iterators

ECE 220 - Fall 2024 ILLINOIS



Recap

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Recap

* References vs. pointers

ECE 220 - Fall 2024 ILLINOIS



Recap

* References vs. pointers

e (Classes vs. structs

ECE 220 - Fall 2024 ILLINOIS



Recap

* References vs. pointers
* Classes vs. structs

e Friend functions

ECE 220 - Fall 2024 ILLINOIS



Recap

* References vs. pointers
e (Classes vs. structs
 Friend functions

* |Inheritance (private/public/
protected)

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Recap

* References vs. pointers  Constructor in derived classes
* Classes vs. structs
* Friend functions

* |Inheritance (private/public/
protected)

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Recap

* References vs. pointers  Constructor in derived classes
* Classes vs. structs * Virtual functions
* Friend functions

* |Inheritance (private/public/
protected)

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Recap

* References vs. pointers  Constructor in derived classes
e (Classes vs. structs e Virtual functions
 Friend functions e Pure virtual functions /

abstract classes
* |Inheritance (private/public/
protected)

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Recap

* References vs. pointers  Constructor in derived classes
e (Classes vs. structs e Virtual functions
 Friend functions e Pure virtual functions /

abstract classes
* |Inheritance (private/public/
protected)  Examples

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Recap: virtual functions

ECE 220 - Fall 2024



Recap: virtual functions

#include <iostream>
using namespace std;

class Animal/{
public:
volid eat(){
cout << "I'm eating generic food." << endl;

}
}i

class Cat : public Animal({
public:
volid eat(){
cout << "I'm eating a mouse." << endl;

}
}i

volid eat lunch(Animal *a){
a->eat();

}

ECE 220 - Fall 2024 ILLINOIS



Recap: virtual functions

#include <iostream> int main(){
using namespace std; Animal *anim = new Animal();
Cat *bruno = new Cat();

class Animal({ anim->eat();
public: bruno->eat();

volid eat(){

cout << "I'm eating generic food." << endl; eat lunch(anim);

} eat lunch(bruno);

}i }

class Cat : public Animal({
public:
volid eat(){
cout << "I'm eating a mouse." << endl;

}
}i

volid eat lunch(Animal *a){
a->eat();

}

ECE 220 - Fall 2024 ILLINOIS



Recap: virtual functions

#include <iostream> int main(){
using namespace std; Animal *anim = new Animal();
Cat *bruno = new Cat();
class Animal/{ anim->eat();
public: bruno->eat();
volid eat(){
cout << "I'm eating generic food." << endl; eat lunch(anim);
} eat lunch(bruno);
}i }
class Cat : public Animal({ : )
blic: Why didn’t Bruno eat a
void eat(){ mouse for lunch ?
cout << "I'm eating a mouse." << endl;
}
i

volid eat lunch(Animal *a){
a->eat();

}

ECE 220 - Fall 2024 ILLINOIS



Recap: virtual functions

#include <iostream> int main(){
using namespace std; Animal *anim = new Animal();
Cat *bruno = new Cat();
class Animal/{ anim->eat();
public: bruno->eat();
volid eat(){
cout << "I'm eating generic food." << endl; eat lunch(anim);
} eat lunch(bruno);
i }
class Cat : public Animal({ : )
blic: Why didn’t Bruno eat a
void eat(){ mouse for lunch ?
cout << "I'm eating a mouse." << endl;
}
}i Need a way for the derived class to override the base class
function,
volid eat lunch(Animal *a){
a->eat(); .. Or....

}

We will have to overload eat 1lunch for each new species!

ECE 220 - Fall 2024 ILLINOIS



Recap: virtual functions

#include <iostream>
using namespace std;

class Animal/{
public:
virtual void eat(){
cout << "I'm eating generic food." << endl;

}
}i

class Cat : public Animal({
public:
volid eat(){
cout << "I'm eating a mouse." << endl;

}
}i

volid eat lunch(Animal *a){
a->eat();

}

ECE 220 - Fall 2024 ILLINOIS



Recap: virtual functions

#include <iostream>
using namespace std;

A virtual function is a

;llgjjcfmimal{ member function in the
virtual void eat(){ <+ " base class that we expect
} cout << "I'm eating generic food." << endl; tO redeﬂne in derived

bi classes

class Cat : public Animal({

public:

volid eat(){
cout << "I'm eating a mouse." << endl;

}
}i

volid eat lunch(Animal *a){
a->eat();

}

ECE 220 - Fall 2024 ILLINOIS



Recap: virtual functions

#include <iostream>
using namespace std;

A virtual function is a

;igjjcfnimal{ member function in the
virtual void eat(){ <+ " base class that we expect
} cout << "I'm eating generic food." << endl; to redefine in derived

b; classes

class Cat : public Animal{

puplic: O e What if your colleagues

cout << "I'm eating a mouse.” << endl; forget to override a virtual
" function? How to ensure
it?

void eat lunch(Animal *a){
a->eat();

}

ECE 220 - Fall 2024 ILLINOIS



Recap: pure virtual functions

ECE 220 - Fall 2024



Recap: pure virtual functions

Pure virtual functions are used

ECE 220 - Fall 2024



Recap: pure virtual functions

Pure virtual functions are used

* |f a function doesn't have any
use In the base class

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Recap: pure virtual functions

Pure virtual functions are used

* |f a function doesn't have any
use In the base class

 but the function must be
implemented by all its derived
classes

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Recap: pure virtual functions

Pure virtual functions are used

* |f a function doesn't have any
use In the base class

 but the function must be
implemented by all its derived
classes

A pure virtual function doesn't have a
function body and it ends with “=0"

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Recap: pure virtual functions

Pure virtual functions are used

class Animal{
public:

e if a function doesn't have any virtual void eat()=0;

. }i
use In the base class

class Cat : public Animal({
public:

* but the function must be void eat(){
implemented by all its derived cout << "I'm eating a mouse." << endl;
}
classes .

A pure virtual function doesn't have a
function body and it ends with “=0"

ECE 220 - Fall 2024 ILLINOIS



Recap: pure virtual functions

Pure virtual functions are used

class Animal{
public:

e if a function doesn't have any virtual void eat()=0;

. }i
use In the base class

class Cat : public Animal({
public:

* but the function must be void eat ()
implemented by all its derived } cout << "I'm eating a mouse.’ << endl;
classes )
A pure virtual function doesn't have a Adding a pure virtual
function body and it ends with “=0" function turns a normal

class to an abstract class!

ECE 220 - Fall 2024 ILLINOIS



Recap: abstract class

 Abstract class is a class that contains one or more pure virtual
functions.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Recap: abstract class

 Abstract class is a class that contains one or more pure virtual
functions.

 No objects of an abstract class can be created!

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Recap: abstract class

 Abstract class is a class that contains one or more pure virtual
functions.

 No objects of an abstract class can be created!

* A pure virtual function that is not implemented in a derived class
remains a pure virtual function, so the derived class is also an
abstract class!

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Recap: abstract class

 Abstract class is a class that contains one or more pure virtual
functions.

 No objects of an abstract class can be created!

* A pure virtual function that is not implemented in a derived class
remains a pure virtual function, so the derived class is also an
abstract class!

 An abstract class is intended as an interface to objects accessed
through pointers and references (e.g. eat lunch function)

ECE 220 - Fall 2024 ILLINOIS



Copy constructor

ECE 220 - Fall 2024



Copy constructor

e Last time we implemented a linked list using the Person class
and LinkedList class.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Copy constructor

e Last time we implemented a linked list using the Person class
and LinkedList class.

 Now recall that we could implement a Stack ADT with a linked list

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Copy constructor

e Last time we implemented a linked list using the Person class
and LinkedList class.

 Now recall that we could implement a Stack ADT with a linked list

e Push: add at head of linked list

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Copy constructor

e Last time we implemented a linked list using the Person class
and LinkedList class.

 Now recall that we could implement a Stack ADT with a linked list
 Push: add at head of linked list

 Pop: remove from head + give popped value to caller

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Copy constructor

e Last time we implemented a linked list using the Person class
and LinkedList class.

 Now recall that we could implement a Stack ADT with a linked list
 Push: add at head of linked list
 Pop: remove from head + give popped value to caller

» How can we do the second part?

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Copy constructor

e Last time we implemented a linked list using the Person class
and LinkedList class.

 Now recall that we could implement a Stack ADT with a linked list
 Push: add at head of linked list
 Pop: remove from head + give popped value to caller

» How can we do the second part?

Need a constructor that can generate a new
instance of the object from a given instance,
I.e. a copy constructor.

UNIVERS ITY OF

ECE 220 - Fall 2024 ILLINOIS



Copy constructor

ECE 220 - Fall 2024



Copy constructor

class Person{
const char *name;
unsigned 1int byear;

public:
Person *next;
Person(const char *name, unsigned int byear);
Person(const Person &p);

}i

Person: :Person(const Person &p){
this->name = p.name;
this->byear = p.byear;
this->next = NULL;

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Copy constructor

class Person{ Second constructor
const char *name; useful to copy an
unsigned int byear; Instance of Person.

public:
Person *next;
Person(const char /*name, unsigned int byear);
Person(const Person &p);

}i

Person: :Person(const Person &p){
this->name = p.name;
this->byear = p.byear;
this->next = NULL;

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Copy constructor

class Person{ Second constructor
const char *name; useful to copy an
unsigned int byear; Instance of Person.

public:
Person *next;
Person(const char /*name, unsigned int byear);
Person(const Person &p);

}i

Person: :Person(const Person &p){
this->name = p.name;
this->byear = p.byear;
this->next = NULL;

Called pass by
constant reference.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Copy constructor

class Person{ Second constructor - .
const char *name: _useful to copy an ’ ExerCIS_e. Can We_
unsigned int byear; _instance of Person. appropriately modify the
Sublic: LinkedList class definition
Person *next; and create a derived Stack

Person(const char /*name, unsigned 1int byear);
Person(const Person &p);

}i

class from it?

Person: :Person(const Person &p){
this->name = p.name;
this->byear = p.byear;
this->next = NULL;

Called pass by
constant reference.

ECE 220 - Fall 2024 ILLINOIS



Copy constructor

class Person{ Second constructor - _
const char *name; _useful to copy an ° ExerCIs_e' Can We.
unsigned int byear; Instance of Person. approprlately mOdlfy the
public: LinkedList class definition
Person *next; and create a derived Stack

Person(const char /*name, unsigned int byear);
Person(const Person &p);

class from it?

}i

Person: :Person(const Person &p)/{ e Stack should Only exXpose the
this->name = p.name; :
this->byear = p.byear; pUSh and POP functions.
this->next = NULL;

}

Called pass by
constant reference.

ECE 220 - Fall 2024 ILLINOIS



Exercise

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Exercise

e How to modify the LinkedList class?

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Exercise

e How to modify the LinkedList class?

 Does add at head and del at head need to be public?

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Exercise

e How to modify the LinkedList class?
 Does add at head and del at head need to be public?

* Can they be private?

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Exercise

e How to modify the LinkedList class?
 Does add at head and del at head need to be public?
* Can they be private?

 When popping, we need access to head pointer to call copy
constructor - can it still be private?

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Recall our swap function?

ECE 220 - Fall 2024



Recall our swap function?

volid swap(int &a, int &b){
int temp = a;
a = b;
b = temp;

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Recall our swap function?

» . int sb _
Vol iifaﬁé;;tz&:; e B * Okay, what if you want to swap two f1oats?
a = b;

b = temp;

}

void swap(float &a, float &b)/{
float temp = a;
a = b;
b = temp;

}

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Recall our swap function?

volid swap(int &a, int &b){
int temp = a;
a = b;

b =+t ;
) =P e How about chars?

* Okay, what if you want to swap two floats?

void swap(float &a, float &b)/{
float temp = a;
a b;
b temp;

}

volid swap(char &a, char &b)/{
char temp = a;
a b;
b temp;

ECE 220 - Fall 2024 ILLINOIS



Recall our swap function?

volid swap(int &a, int &b){
int temp = a;

* Okay, what if you want to swap two floats?

a = b;
b = temp;
) g « How about chars?
void swap(float &a, float &b)/{
float temp = a; e Cool, how about two Persons?
a = b;
b = temp;

}

volid swap(char &a, char &b)/{
char temp = a;
a b;
b temp;

ECE 220 - Fall 2024 ILLINOIS



Recall our swap function?

volid swap(int &a, int &b){
int temp = a;

* Okay, what if you want to swap two floats?

a = b;
b = temp;
) g « How about chars?
void swap(float &a, float &b)/{
float temp = a; e Cool, how about two Persons?
a = b;
b = temp;

}

class Person{
const char *name;

volid swap(char &a, char &b)/{ , ,
unsigned i1nt byear;

char temp = a;
a b;

b temp; "
} i

ECE 220 - Fall 2024 ILLINOIS



Recall our swap function?

volid swap(int &a, int &b){
int temp = a;

* Okay, what if you want to swap two floats?

a = b;
b = temp;
) g « How about chars?
void swap(float &a, float &b)/{
float temp = a; e Cool, how about two Persons?
a = b;
b = temp;

}

class Person{
const char *name;

volid swap(char &a, char &b)/{ , ,
unsigned i1nt byear;

char temp = a;
a b;

b temp; "
} i

Are we doomed to keep writing swaps?

ECE 220 - Fall 2024 ILLINOIS



Enter C++ templates

ECE 220 - Fall 2024



Enter C++ templates

* A template is a blueprint for creating a generic function or a class.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Enter C++ templates

* A template is a blueprint for creating a generic function or a class.

A mechanism to allow us to write code once with a dummy type
(called a template) and then cast to the right kind when needed.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Enter C++ templates

* A template is a blueprint for creating a generic function or a class.

A mechanism to allow us to write code once with a dummy type
(called a template) and then cast to the right kind when needed.

int Add(int a, int b){
return a+tb;

}

double Add(double a, double b){
return a+tb;

}

ECE 220 - Fall 2024 ILLINOIS



Enter C++ templates

* A template is a blueprint for creating a generic function or a class.

A mechanism to allow us to write code once with a dummy type
(called a template) and then cast to the right kind when needed.

int Add(int a, int b){
return a+tb;

}

template <typename T>
T Add(T a, T b){
return a+tb;

double Add(double a, double b){ }
return a+tb;

}

ECE 220 - Fall 2024 ILLINOIS



UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Example

#include <iostream>
using namespace std;

template <typename T>
T AdA(T a, T b){
return a+tb;

}

int main(){
cout<<Add(l, 3)<<endl;
cout<<Add(l.2, 3.5)<<endl;

ECE 220 - Fall 2024

UNIVERSITY O=
ILLINOIS
URLANA-C AVFALIGH



Example

e lude <iostreams Well ... what if we want to be able to
+ 4 = 4 ) 1 )
using namespace std; add 2 to ‘C’ and get “E”?

template <typename T>
T AdA(T a, T b){
return a+tb;

}

int main(){
cout<<Add(l, 3)<<endl;
cout<<Add(l.2, 3.5)<<endl;

ECE 220 - Fall 2024

ILLINOIS



Example

e lude <iostreans Well ... what if we want to be able to
using namespace std; add 2 to ‘C’ and get “E”?

template <typename T> You can specify more than one
T Add(T a, T b){

return a+b; typename.
}

int main(){
cout<<Add(l, 3)<<endl;
cout<<Add(l.2, 3.5)<<endl;

ECE 220 - Fall 2024 ILLINOIS



Example

o lude <iostreans Well ... what if we want to be able to
+ 4 = 4 ) 1 )
using namespace std; add 2 to ‘C’ and get “E”?

template <typename T>

You can specify more than one
T Add(T a, T b){

return a+tb; typename-
}
int main(){
cout<<Add(1l, 3)<<endl; template <typename T1, typename T2>
cout<<Add (1.2, 3.5)<<endl; T2 Add(T1 a, T2 b){
return a+tb;
} }

ECE 220 - Fall 2024 ILLINOIS



Example

o lude <iostreans Well ... what if we want to be able to
using namespace std; add 2 to ‘C’ and get “E”?

template <typename T>

T AdA(T a, T b){ You can specify more than one

return a+tb; typename.
}
int main(){
cout<<Add(1l, 3)<<endl; template <typename T1, typename T2>
cout<<Add (1.2, 3.5)<<endl; T2 Add(T1 a, T2 b){
cout<<Add (2, ‘C’)<<endl; return atb;
} }

ECE 220 - Fall 2024 ILLINOIS



Exercise

Implement myswap
so it works for any
type of argument.
Then use it to swap
two instances of
Person.

Note: It cannot be named swap, that will conflict with a templated swap function in the standard library.
ECE 220 - Fall 2024

ILLINOIS




Exercise

class Person({
const char *name;

Implement myswap

so it works for any unsigned int byear;
type of argument.
Then use it to swap public:
: Person *next;
two instances of Person(const char *name, unsigned int byear);
Person. Person(const Person &p);
bi

Person: :Person(const Person &p){
this->name = p.name;
this->byear = p.byear;
this->next = NULL;

Note: It cannot be named swap, that will conflict with a templated swap function in the standard library.
ECE 220 - Fall 2024

UNIVERSITY O=
ILLINOIS
URDAMNA-C-AMPAIGH




Class templates

ECE 220 - Fall 2024



Class templates

e Just like we can have
function templates, we
can also have class
template.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS




Class templates

e Just like we can have #include <iostream>
function templates, we using namespace std;
can also have class template <typename T>
template class Node({

' T data;
public:
 Here is a generic node. Node<T> * next;

Node (T inval){
data = inval;
next = NULL;

}

void print(){ cout<<data; }

}i

ECE 220 - Fall 2024 ILLINOIS



Class templates

e Just like we can have #include <iostream>
function templates, we using namespace std;
can also have class template <typename T>
template class Node({

' T data;
public:
 Here is a generic node. Node<T> * next;

Node (T inval){
data = inval;

 Implement a linked list on next = NULL;
this gnd test with chars void print(){ cout<<data; }
and ints ¥

ECE 220 - Fall 2024 ILLINOIS



Class templates

* Just like we can have template <class H>
: class LinkedList{
function templates, we H *head:
can also have class

public:
template. LinkedList () {

this->head = NULL;
* Here is a generic node. oo
volid print list();
void add at head(H &p);

 Implement a linked list on void del_at_head();
: : ~LinkedList () ;
this and test with chars 1S rokecList()
and ints

What would you need to make this work with our Person class?

ECE 220 - Fall 2024 ILLINOIS



C++ STL: Standard Template Library

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



C++ STL: Standard Template Library

 The Standard Template
Library (STL) is a set of C++
template classes to provide
common programming data
structures and functions such
as lists, stacks, arrays, etc.

ECE 220 - Fall 2024 ILLINOIS



C++ STL: Standard Template Library

* The Standard Template e STL has five components
Library (STL) is a set of C++

template classes to provide
common programming data
structures and functions such
as lists, stacks, arrays, etc.

ECE 220 - Fall 2024 ILLINOIS



C++ STL: Standard Template Library

* The Standard Template  STL has five components
Library (STL) is a set of C++
template classes to provide * Algorithms

common programming data
structures and functions such
as lists, stacks, arrays, etc.

ECE 220 - Fall 2024 ILLINOIS



C++ STL: Standard Template Library

* The Standard Template e STL has five components
Library (STL) is a set of C++
template classes to provide * Algorithms
common programming data |
structures and functions such » Containers

as lists, stacks, arrays, etc.

ECE 220 - Fall 2024 ILLINOIS



C++ STL: Standard Template Library

* The Standard Template e STL has five components
Library (STL) is a set of C++
template classes to provide * Algorithms
common programming data |
structures and functions such » Containers

as lists, stacks, arrays, etc. e |terators

ECE 220 - Fall 2024 ILLINOIS



C++ STL: Standard Template Library

* The Standard Template e STL has five components
Library (STL) is a set of C++
template classes to provide * Algorithms
common programming data |
structures and functions such » Containers

as lists, stacks, arrays, etc. e |terators

ECE 220 - Fall 2024 ILLINOIS



C++ STL: Standard Template Library

* The Standard Template e STL has five components
Library (STL) is a set of C++
template classes to provide * Algorithms
common programming data |
structures and functions such » Containers

as lists, stacks, arrays, etc. e |terators

ECE 220 - Fall 2024 ILLINOIS



C++ STL: Standard Template Library

* The Standard Template e STL has five components
Library (STL) is a set of C++
template classes to provide * Algorithms
common programming data |
structures and functions such » Containers

as lists, stacks, arrays, etc. e |terators

Left for later classes -

ECE 220 - Fall 2024 ILLINOIS



Algorithms

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Algorithms

 STL contains standard and vetted implementations of algorithms
for sorting, searching, partitioning, etc.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Algorithms

 STL contains standard and vetted implementations of algorithms
for sorting, searching, partitioning, etc.

#include <algorithm>
#include <iostream>

using namespace std;

void show(int a[], int array size){
int 1=0;
for (1 = 0; 1 < array size-1; ++1)
cout << af[1] << ", ";
cout<<a[i]<<endl;

}

ECE 220 - Fall 2024 ILLINOIS



Algorithms

 STL contains standard and vetted implementations of algorithms
for sorting, searching, partitioning, etc.

#include <algorithm> int main(){

#include <iostream> int a[] = { 1! 5/ 8! 91 6r 71 3! 41 2! 0 }7
int asize = sizeof(a) / sizeof(a[0]);

using namespace std; cout << "The array before sorting is: \n";

show(a, asize);
void show(int a[], int array size){

int 1=0; sort(a, a + asize);
for (i = 0; i < array size-1; ++1i) cout << "\n\nThe array after sorting is:\n";
cout << a[i1i] << ", "; show(a, asize);
cout<<a[i]<<endl; return 0;
} }

ECE 220 - Fall 2024 ILLINOIS




Containers

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Containers

e \ectors

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Containers

e \ectors

 Dynamically sized but
also contiguously stored

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Containers

e \ectors

 Dynamically sized but
also contiguously stored

e Fast traversal

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Containers

e \ectors

 Dynamically sized but
also contiguously stored

* Fast traversal
* Insertion at beginning

expensive, end ...
variable

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS




Containers

e \ectors e |ists

 Dynamically sized but
also contiguously stored

* Fast traversal
* Insertion at beginning

expensive, end ...
variable

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS




Containers

e \ectors e |ists

 Dynamically sized but * Doubly linked lists
also contiguously stored

* Fast traversal
* Insertion at beginning

expensive, end ...
variable

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS




Containers

e \ectors e |ists

 Dynamically sized but * Doubly linked lists
also contiguously stored
 Non-contiguously stored

* Fast traversal
* Insertion at beginning

expensive, end ...
variable

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Containers

e \ectors e |ists

 Dynamically sized but * Doubly linked lists
also contiguously stored
 Non-contiguously stored
* Fast traversal
* Slower traversal
* Insertion at beginning
expensive, end ...
variable

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Containers

e \ectors e |ists

 Dynamically sized but * Doubly linked lists
also contiguously stored
 Non-contiguously stored
* Fast traversal
* Slower traversal
* Insertion at beginning
expensive, end ... * |nsertion/deletion constant
variable time

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Containers

e \ectors e |ists

 Dynamically sized but * Doubly linked lists
also contiguously stored
 Non-contiguously stored
* Fast traversal
* Slower traversal
* Insertion at beginning
expensive, end ... * |nsertion/deletion constant
variable time

There are many more, but we will talk about these two and deal with rest on need-to-know basis.

ECE 220 - Fall 2024 ILLINOIS



Vectors - common operations

« push back — It push the elements e swap - It is used to swap the contents
Into a vector from the back of one vector with another vector of
same type. Sizes may differ.

e pop back —Itis used to pop or

remove elements from a vector from e clear - Itis used to remove all the
the back. elements of the vector container

e insert — It Inserts new elements e front — Returns a reference to the
before the element at the specified first element in the vector
position

 back — Returns a reference to the last
e assign - It assigns new value to the element in the vector

vector elements by replacing old ones
 size — Returns size of the container

ECE 220 - Fall 2024 ILLINOIS



UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Example

#include <iostream>
#include <vector>

using namespace std;

int main(){
vector<int> gl;

for (int 1 = 1; 1 <= 5; 1i++)
gl.push back(1i);

cout << "Size: " << gl.size() <<endl;

cout << "Elements: :

for (int 1 = 0; 1 < 5; 1i++)
cout<<gl[i]<<" ";

cout<<endl;
return 0;

ECE 220 - Fall 2024 ILLINOIS



Example

#include <iostream>
#include <vector>

using namespace std;

int main(){
vector<int> gl;

for (int 1 = 1; 1 <= 5; 1i++)
gl.push back(1i);

cout << "Size: " << gl.size() <<endl

cout << "Elements: :

for (int 1 = 0; 1 < 5; 1i++)
cout<<gl[i]<<" ";

cout<<endl;
return 0;

ECE 220 - Fall 2024 ILLINOIS



#include <iostream>

#include <vector> This is traditionally how we
using namespace std; have been taught to Iterate
over an array.

int main(){
vector<int> gl;

for (int 1 = 1; 1 <= 5; 1i++)
gl.push back(1i);

cout << "Size: " << gl.size() <<endl

cout << "Elements: :

for (int 1 = 0; 1 < 5; 1i++)
cout<<gl[i]<<" ";

cout<<endl;
return 0;

ECE 220 - Fall 2024 ILLINOIS



Example

This is traditionally how we

#include <iostream>
#include <vector>

using namespace std; have been taught to Iterate
it main() over an array.
vector<int> gl;
for (int i = 1: i <= 5; i++) But there are many containers
gl.push_back(1); iNn STL: vector, list,
cout << "Size: " << gl.size() <<endl queue, map, set, etc.

cout << "Elements: "

°
4

for (int 1 = 0; 1 < 5; 1i++)
cout<<gl[i]<<" "

°
4

cout<<endl;
return 0;

ECE 220 - Fall 2024

ILLINOIS



Example

This is traditionally how we

#include <iostream>
#include <vector>

using namespace std; have been taught to Iterate
it main() over an array.
vector<int> gl;
for (int i = 1: i <= 5; i++) But there are many containers
gl.push_back(1); iNn STL: vector, list,
cout << "Size: " << gl.size() <<endl queue, map, set, etc.

cout << "Elements: "

°
4

for (int 1 = 0; 1 < 5; 1i++)
cout<<gl[i]<<" "

Need a consistent way to
iterate over containers
cout<<endl; regardless of
return 0; : :
) functionality!

°
4

ECE 220 - Fall 2024

ILLINOIS



lterators - common methods

ECE 220 - Fall 2024



lterators - common methods

* begin() — Used to return the beginning position of the container.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



lterators - common methods

* begin() — Used to return the beginning position of the container.

 end () — Used to return the position after the end of the container.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



lterators - common methods

* begin() — Used to return the beginning position of the container.
 end () — Used to return the position after the end of the container.

e advance(itr, num) — Used to increment the iterator itr
position till the specified number num.

ECE 220 - Fall 2024 ILLINOIS



lterators - common methods

* begin() — Used to return the beginning position of the container.
 end () — Used to return the position after the end of the container.

e advance(itr, num) — Used to increment the iterator itr
position till the specified number num.

e next(itr, num), prev(itr, num) - Used to return new
iterators after incrementing or decrementing itr by num positions.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



lterators

 [terators point to the address of elements of a container.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



lterators

 [terators point to the address of elements of a container.

#include<iostream>
#include<iterator> // for iterators
#include<vector> // for vectors

using namespace std;

int main() {
vector<int> ar = {1, 2, 3, 4, 5 };
vector<int>::iterator ptr; // Declaring iterator to a vector

cout << "The vector elements are : ":

4

for (ptr = ar.begin(); ptr < ar.end(); ptr++)
cout << *ptr << " ";

(4

return 0;

ECE 220 - Fall 2024 ILLINOIS



begin () — Returns an iterator
pointing to the first element in the
vector

end () — Returns an iterator pointing
to the theoretical element after last

rbegin () — Returns a reverse

iterator pointing to the last element in
the vector

rend () — Returns a reverse iterator
pointing to the theoretical element
before the first

ECE 220 - Fall 2024

Vectors - More operations

cbegin() — Returns a constant
iterator pointing to the first element in
the vector.

cend () — Returns a constant iterator
pointing to the element after last

crbegin () — Returns a constant
reverse iterator pointing to the last
element in the vector

crend () — Returns a constant
reverse iterator pointing to the
theoretical element before the first

ILLINOIS



Lists - common operations

e front () — Returns the value of e pop front() - Removes the
the first element in the list. first element of the list

* back () — Returns the value of e pop back() — Removes the
the last element in the list. last element of the list

e push front() — Adds anew e insert() —Inserts new
element at the beginning of the elements in the list before the
list. element at a specified position.

e push back() —Adds a new e size( ) — Returns the number of
element at the end of the list. elements in the list.

ECE 220 - Fall 2024 ILLINOIS



UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



Example

#include <iostream>
#include <iterator>
#include <list>

using namespace std;

template <typename T>
volid showlist(list<T> g){
typename list<T>::iterator it;
for (auto it = g.begin(); it != g.end(); ++it)
cout << '"\t' << *it;
cout << endl;

ECE 220 - Fall 2024 UKIVERSITY O

ILLINOIS



Example

#include <iostream>
#include <iterator>
#include <list>

using namespace std;

template <typename T>
volid showlist(list<T> g){
typename list<T>::iterator it;
for (auto it = g.begin(); it != g.end(); ++it)
cout X< '\t' << *it;
cout << en

°
4

}
New keyword introduced in C++11,
allows compiler to deduce the type.
ECE 220 - Fall 2024 ILLINOIS

ILLINOIS



Example

#include <iostream> int main(){
#include <iterator>
#include <list> list<int> gqglistl, gqglist2;

using namespace std;
for (int 1 = 0; 1 < 10; ++1) {

template <typename T> ggqlistl.push back(i * 2);
void showlist(list<T> g){ ggqlist2.push front(i * 3);
typename list<T>::iterator it; }
for (auto it = g.begin(); it != g.end(); ++it)
cout X< '\t' << *it; cout << "\nList 1 (gglistl) is : ";
cout << endl: showlist(gglistl);
}

cout << "\nList 2 (gglist2) is : ";

_ _ showlist(gglist2);
New keyword introduced in C++11,

allows compiler to deduce the type.

cout << "\ngglist2.sort(): ";
gglist2.sort();
showlist(gglist2);

return 0;

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS



