ECE 220

Lecture x0014 - 11/07/24
Introduction to C++

ECE 220 - Fall 2024 ILLINOIS

Recap + reminders

» | ast class(es) Reminder(s)
* Doubly linked lists e MT2 grades have been
posted
* Problem-solving with linked
lists Regrades due by Sunday
* This class: Intro to C++ CBTF reservations are now

open for Quiz 5

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

About the midterm

0 u 0 —-
0 10 20 30
0 ! _-.III
.

0 10

UNIVERSITY

ECE 220 - Fall 2024 ILLINOIS

Hello World!

In the tradition of programmers everywhere, we’ll use a “Hello, world!”
program as an entry point into the basic features of C++

// A Hello World program
include <iostream>

int main(){
std :: cout << "Hello, world!\n”;

return 0;

ECE 220 - Fall 2024 ILLINOIS

Hello World!

In the tradition of programmers everywhere, we’ll use a “Hello, world!”
program as an entry point into the basic features of C++

// A Hello World program
include <iostream>

Keywords , : Literals
Words with special main() Basic constant values
meaning to the compiler std :: cout |<<||"Hello, world!\n"[whose value is specified
directly in the source
code
return 0/
}
Identifiers Operators
Names of things that are not Mathematical or logical
built into the language operations

ECE 220 - Fall 2024 ILLINOIS

Basic I/0

e cout << - This is the syntax for outputting some piece of text to the screen

e cin >> - This is the syntax for inputting values

* Namespace - In C++, identifiers can be defined within a context — sort of a
directory of names — called a namespace. When we want to access an identifier
defined in a namespace, we tell the compiler to look for it in that namespace
using the scope resolution operator (: :).

 For example:
std :: cout << "Hello, world!\n”:

Here we’re telling the compiler to look for cout in the std namespace, in which
many standard C++ identifiers are defined (part of iostream).

ECE 220 - Fall 2024 ILLINOIS

Basic I/0

Note the lack of .h extension. In C++ standard
#include <iostream> » header files have no extensions, but user
defined header files should.

using namespace std;

int main() { Thig IS a declaration for
convenience. It allows us to not
have to specify std: :cout,
char name[20]; std: :cin, etc.

cout << “Enter your name: ";
cin >> name;
cout << “Your name 1is: ” << name << endl;

return O0;

}

How do we save/run this file? File extensions are now . cpp rather than .c

Use g++ rather than gcc for compilation.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

The changes ...

e *.,c became *.cpp e Structs get superpowers to

L | become objects via classes
 Compiler is now g++ instead of

gcc Paradigm change: procedural
| | programming to object-oriented
* 1JostreamVs. stdio.h programming
* Functions can have default » Dynamic memory allocation is
arguments different
* Functions and operators can be ¢ Etc.
overloaded

ECE 220 - Fall 2024 ILLINOIS

Just a comparison ...

e | ISO/IEC ISO/IEC 14882:2024
_ — 14882:2024 216

Programming languages —

C AL Language
English v
Read sample Published (Fdition 7, 2024) Format
O PDF

Add to cart

Comeer, Swiss lterss 1CHIM W yeur

CLrency

Abstract General information

Status : Published
Publication date : 2024-10
Stage : International Standard
published [€0.60]

This document specifies reauirements for implamentations of
the C++ programming language. The first such reguirement is
that they implemeant the language, so this documeant also
defines C++, Qther reguirements

Edition: 7

and relaxations of the first requirement appear at various
4 . Mumber of pages : 2104

nlaces within this cocumeant,

Technical Committee :

ISCYIEC JTC 1/SC 22

C++ is a gereral purpose programming language based on the
C pregramming language as described in

ECE 220 - Fall 2024 J[ILLINOIS

ECE 220 - Fall 2024

Just a comparison ...

ations of
rement is
also

ous

sed on the

Convert Swiss francs (CHF) to your
currency

General information

Status : Published
Publication date : 2024-10
Stage : International Standard
published [60.60]

Edition : 7
Number of pages : 2104

Technical Committee :
ISO/IEC JTC 1/SC 22
ICS : 35.060

UNIVERSITY OF

ILLINOIS

Default arguments

float bmi si(float hcm, float kg)({

C: Write two functions
return kg / (hcm/100 * hcm/100);

. and use appropriate
’ one depending on units
at hand.

float bmi usa(float hin, float 1lbs){
return lbs / (hin * hin) * 703;

}
C++: Write one function float bmi(float ht, float wt, bool si=false){
which can accept an float val = wt/(ht*ht);
optional flag for the rare if (si) l
case an European reports return val*10000; Default value is false

their weight and height in
centimeters and kilograms

else
return val*703;

ECE 220 - Fall 2024 ILLINOIS

Dynamic allocation in C & C++

include <iostream>

int main(){

Dynamic allocation is Dynamic allocation is int *p;

accomplished by malloc accomplished by new
// Allocating an integer’s worth of space

P new int;

Deallocation Deallocation
accomplished by free accomplished by delete

// Deallocating

Bothmalloc and free Both new and delete are delete p;

are library functions keyword/operators }

How about an array of ints”?

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Function overloading

e C++ allows mu|tip|e double volume(float r){
functions with the same return 22.0/7xrxrxr*4/3;
: }
name but different
parameters_ double volume(float r, float 1){
return 22.0/7*r*r*1;
}
* Note: The return value
cannot be different double volume(float w, float h, float 1){
return w * h * 1;
}

e Why?

ECE 220 - Fall 2024 ILLINOIS

Introduction to classes in C++

C++: created in 1979 by Bjarne Stroustrup at Bell Labs, as an extension to C.

It’s called an Object Oriented language.

Object Oriented Programming (OOP)

Programming style associated with classes and objects and other concepts like

 Encapsulation

e |nheritance » More next week

 Polymorphism, etc. C C++

A class in C++ is similar to struct in C except it defines

e control “who” can access the data

» Today: classes

e provide functions specific for the class & its data

ECE 220 - Fall 2024 ILLINOIS

Concepts related to classes

An object is an instance of a class. An object
e shares the same functions with other objects of the same class

* but each object has its own copy of the data

Class Object

o

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Introduction to classes

4 include <stdio.h> * Classes provide more
structured or granular
struct student{
char name[80]: access to members.
unsigned long UIN;
unsigned 1nt year;
float GPA; Two access types,
i Anyone can modify the records! private (default) and
int main(void){ public_
struct student sl {"Garfield", 123456, 6, 3.9};
printf("%s is ap”excellent student!\n", sl.name);
sl.GPA = 1.5;

. . | * Members can also be
printf("Their GPA is %f", s1.GPA); _
) functions.

Actually in C++ (but not in C), structs can also have member functions, but that is an advanced topic.
ECE 220 - Fall 2024 ILLINOIS

Introduction to classes

e How to declare an instance of a class?

Also applies to initialization, I.e.
we need to write a class
include <iostream> method to initialize an

using namespace std; instance.

/

Typically this is accomplished
using the class methods.

class Student({
char name[74];
unsigned long UIN;

unsigned int year; /

float GPA; Class members are private.

}i Only the class itself can

: : . access them!
int main(void){

Student sl = {"Garfield", 123456, 6, 3.5}; ,/’
cout<<sl.name<<" 1s an excellent student!"<<endl;
sl.GPA = 2.4;

cout<<"Their GPA 1is "<<sl.GPA<<endl;

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Constructors

 There are two functions that
should be implemented for
all classes: constructs and
destructors.

e Constructors are used to
Initialize instances of a
class.

 |f we don’t declare one,
compiler implicitly produces
a default one.

These are private.
class Student{ ’//////)v
char name[74];

unsigned long UIN;
unsigned int year;

float GPA; Everything after
— this will be public.

public: —
Student (char const *name, unsigned int UIN,
unsigned int year, float GPA);

}i

Student: :Student(char const *name,
unsigned int UIN,
unsigned int year,
float GPA){

strcpy(this->name, name);

this->UIN = UIN: 1. A constructor has

this->year = year; no return type.

this->GPA = GPA; 2. A constructor must
} have the same name

as its class.

UNIVERSITY OF

ECE 220 - Fall 2024

ILLINOIS

This pointer

class Student{

* Remember methods are shared char name[74];
between all instances of a unsigned long UIN;
: unsigned int year;
class. However, each instance float GPA:
keeps its own copy of the data.
public:
_ Student (char const *name, unsigned int UIN,
e When we invoke a method on a unsigned int year, float GPA);
particular object/instance of a bi
CIaSS, we need a Way to refer to Student: :Student(char const *name,
that particular instance’s copy unsigned int UIN,
unsigned int year,
of the data. float GPA){
strcpy(this->name, name);
 This is accomplished using the this->UIN = UIN;
] _ this->year = year;
this pointer. this->GPA = GPA;
}

ECE 220 - Fall 2024 ILLINOIS

Constructors

int main(void){
Student sl = Student(“Garfield"”, 123456, 6, 3.5);
cout << sl.name << " is an excellent student!" << endl;

cout << "Their GPA is: " << sl.GPA << endl;

class Student({
char name[74];
unsigned long UIN;
unsigned int year;
float GPA; }

public: _
Student (char const *name, Still not correct. We cannot access

unsigned int UIN, the private members.

unsigned int year,
float GPA);

& + Solutions?

Student: :Student(char const *name,
e int voar. « Write a function to print details of a
tloat GPA){ student out.

strcpy(this->name, name);
this->UIN = UIN;

this->year = year; * Write getters and setters.

this->GPA = GPA;

ECE 220 - Fall 2024 J[ILLINOIS

Getters ...

include <iostream> Student: :Student(char const *name, unsigned int UIN,
using namespace std; unsigned int year, float GPA){
strcpy(this->name, name);
class Student{ this->UIN = UIN;
char name[74]; this->year = year;
unsigned long UIN; this->GPA = GPA;
unsigned int year; }
float GPA;
float Student::get GPA(){
public: return this->GPA;
Student (char const *name, }
unsigned int UIN,
unsigned int year, char const * Student::get name(){
float GPA); return this->name;
}
float get GPA();
char const * get name(); int main(void){
}; Student sl = {"Garfield", 123456, 6, 3.5};

cout<<sl.get name()<<" is an excellent student! "<<endl;
cout<<"Their GPA is: "<<sl.get GPA()<<endl;

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

... and setters

include <iostream> Student: :Student (char const *name, unsigned int UIN,
using namespace std; unsigned int year, float GPA){
name = name;
class Student({ UIN = UIN;
char name[74]; year = year;
unsigned long UIN; GPA = GPA;
unsigned 1int year; }
float GPA;
float Student::get GPA(){
public: return this->GPA;
Student (char const *name, }
unsigned int UIN,
unsigned 1int year, char const * Student::get name() {
float GPA); return this->name;
}
float get GPA();
char const * get name(); void Student::set GPA(float gpa){
void set GPA(float gpa); this->GPA = gpa;
}i }

ECE 220 - Fall 2024 ILLINOIS

Classes - summary so far ...

Member functions

e Member functions also called methods are functions that are
part of a class

Private vs. public members

e private members can only be accessed by member functions
(default)

* public members can be accessed by anyone

Constructors & destructor

* special member functions that creates and deletes an object
(when it goes outside of scope)

ECE 220 - Fall 2024 ILLINOIS

Summary - constructors

A special method which is invoked automatically at the time of
object creation.

* Used to initialize the data members.

* |t has the same name as class.

 Two types: default constructor & user defined constructor.
* QOverloading and default arguments are possible.

e Has no return value: not even void.

ECE 220 - Fall 2024 ILLINOIS

Destructors

* Destructor is a member function that destroys an object.
e |t is called automatically when the object goes out of scope.

e |t has the same name as class, but prefixed with ~.

 No argument (overloading and default arguments are not
possible).

e No return value.

* Primary use: de-allocate memory!

More on this in the exercise!

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Operator overloading

#include<iostream>
using namespace std;

int main(){
Complex cl
Complex c2

class Complex/{

Complex (2, 4);
double real;

Complex (3, -=-5);

double imag; Wouldn’t it be nice if we could .
do something like that?) Complex c3 = cl + c2;
public:
Complex(double real, double imag)/{
this->real = real;
this->imag = imag;
} C++ allows you to
void print () overload standard
cout<<" (" <<this->real<<" + "<<this->imag<<")"; Qperatgrs SO that you
} :
) can use them with your

classes.

ECE 220 - Fall 2024 ILLINOIS

Operator overloading

#include<iostream>
using namespace std;

int main(){

class Complex{ Complex cl = Complex(2, 4);
double real; Complex c2 = Complex(3, -5);
double imag; Complex c3 = cl + c2;

}
public:
Complex(double real, double imagqg){
this->real = real;
this->imag = imag;
} Just write a function of this form to enable

volid print(){
cout<<" (" <<this->real<<" + "<<this->imag<<")";

}

Complex operator+(Complex c){
return Complex(this->real + c.real, this->imag + c.imag);

}
}r

ECE 220 - Fall 2024 ILLINOIS

Exercise(s)

* QOverload the multiplication operator to multiply two complex
numbers.

* |Implement a linked lists in C++ using classes.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

