
 ECE 220 - Fall 2024 Dr. Ivan Abraham

ECE 220
Lecture x0014 - 11/07/24

Introduction to C++

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Recap + reminders
• Last class(es)

• Doubly linked lists

• Problem-solving with linked
lists

• This class: Intro to C++

• Reminder(s)

• MT2 grades have been
posted

• Regrades due by Sunday

• CBTF reservations are now
open for Quiz 5

￼2

 ECE 220 - Fall 2024 Dr. Ivan Abraham

About the midterm

￼3

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Hello World!

// A Hello World program
include <iostream>

int main(){
 std :: cout << "Hello, world!\n”;

return 0;
}

￼4

In the tradition of programmers everywhere, we’ll use a “Hello, world!”
program as an entry point into the basic features of C++

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Hello World!

// A Hello World program
include <iostream>

int main(){
 std :: cout << "Hello, world!\n”;

return 0;
}

￼5

In the tradition of programmers everywhere, we’ll use a “Hello, world!”
program as an entry point into the basic features of C++

Literals
Basic constant values
whose value is specified
directly in the source
code

Identifiers
Names of things that are not
built into the language

Keywords
Words with special
meaning to the compiler

Operators
Mathematical or logical
operations

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Basic I/O
• cout << - This is the syntax for outputting some piece of text to the screen

• cin >> - This is the syntax for inputting values

• Namespace - In C++, identifiers can be defined within a context – sort of a
directory of names – called a namespace. When we want to access an identifier
defined in a namespace, we tell the compiler to look for it in that namespace
using the scope resolution operator (::).

• For example:

 std :: cout << "Hello, world!\n”;

Here we’re telling the compiler to look for cout in the std namespace, in which
many standard C++ identifiers are defined (part of iostream).

￼6

 ECE 220 - Fall 2024 Dr. Ivan Abraham

#include <iostream>

using namespace std;

int main(){

char name[20];
 cout << “Enter your name: ”;
 cin >> name;

 cout << “Your name is: ” << name << endl;

return 0;
}

￼7

This is a declaration for
convenience. It allows us to not

have to specify std::cout,
std::cin, etc.

Note the lack of .h extension. In C++ standard
header files have no extensions, but user

defined header files should.

How do we save/run this file? File extensions are now .cpp rather than .c

Use g++ rather than gcc for compilation.

Basic I/O

 ECE 220 - Fall 2024 Dr. Ivan Abraham

The changes …
• *.c became *.cpp

• Compiler is now g++ instead of
gcc

• iostream vs. stdio.h

• Functions can have default
arguments

• Functions and operators can be
overloaded

• Structs get superpowers to
become objects via classes

• Paradigm change: procedural
programming to object-oriented
programming

• Dynamic memory allocation is
different

• Etc.

￼8

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Just a comparison …

￼9

272 Pages

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Just a comparison …

￼10

272 Pages

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Default arguments

￼11

float bmi_si(float hcm, float kg){
 return kg / (hcm/100 * hcm/100);
}

float bmi_usa(float hin, float lbs){
 return lbs / (hin * hin) * 703;
}

float bmi(float ht, float wt, bool si=false){
 float val = wt/(ht*ht);
 if (si)
 return val*10000;
 else
 return val*703;
}

C: Write two functions
and use appropriate
one depending on units
at hand.

C++: Write one function
which can accept an
optional flag for the rare
case an European reports
their weight and height in
centimeters and kilograms

Default value is false

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Dynamic allocation in C & C++

￼12

C C++

Dynamic allocation is
accomplished by malloc

Dynamic allocation is
accomplished by new

Deallocation
accomplished by free

Deallocation
accomplished by delete

Both malloc and free
are library functions

Both new and delete are
keyword/operators

include <iostream>

int main(){
 int *p;

 // Allocating an integer’s worth of space
 p = new int;  

 .
 .
 .
 // Deallocating  
 delete p;
}

How about an array of ints?

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Function overloading
• C++ allows multiple

functions with the same
name but different
parameters.

• Note: The return value
cannot be different

• Why?

￼13

double volume(float r){
 return 22.0/7*r*r*r*4/3;
}

double volume(float r, float l){
 return 22.0/7*r*r*l;
}

double volume(float w, float h, float l){
 return w * h * l;
}

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Introduction to classes in C++

C++: created in 1979 by Bjarne Stroustrup at Bell Labs, as an extension to C.

It’s called an Object Oriented language.

Object Oriented Programming (OOP)

Programming style associated with classes and objects and other concepts like

• Encapsulation

• Inheritance

• Polymorphism, etc.

A class in C++ is similar to struct in C except it defines

• control “who” can access the data

• provide functions specific for the class & its data

￼14

C C++

More next week

Today: classes

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Concepts related to classes
An object is an instance of a class. An object

• shares the same functions with other objects of the same class

• but each object has its own copy of the data  

￼15

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Introduction to classes

￼16

include <stdio.h>

struct student{
 char name[80];
 unsigned long UIN;
 unsigned int year;
 float GPA;
};

int main(void){
 struct student s1 = {"Garfield", 123456, 6, 3.9};
 printf("%s is an excellent student!\n", s1.name);
 s1.GPA = 1.5;
 printf("Their GPA is %f", s1.GPA);
}

Anyone can modify the records!

• Classes provide more
structured or granular
access to members.

• Two access types,
private (default) and
public.

• Members can also be
functions.

Actually in C++ (but not in C), structs can also have member functions, but that is an advanced topic.

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Introduction to classes
• How to declare an instance of a class?

￼17

include <iostream>
using namespace std;

class Student{
 char name[74];
 unsigned long UIN;
 unsigned int year;
 float GPA;
};

int main(void){
 Student s1 = {"Garfield", 123456, 6, 3.5};
 cout<<s1.name<<" is an excellent student!"<<endl;
 s1.GPA = 2.4;
 cout<<"Their GPA is "<<s1.GPA<<endl;
}

Class members are private.
Only the class itself can

access them!

Typically this is accomplished
using the class methods.

Also applies to initialization, i.e.
we need to write a class
method to initialize an

instance.

 ECE 220 - Fall 2024 Dr. Ivan Abraham

class Student{
 char name[74];
 unsigned long UIN;
 unsigned int year;
 float GPA;

public:
 Student(char const *name, unsigned int UIN,
 unsigned int year, float GPA);
};

Student::Student(char const *name,
 unsigned int UIN,
 unsigned int year,
 float GPA){
 strcpy(this->name, name);
 this->UIN = UIN;
 this->year = year;
 this->GPA = GPA;
}

Constructors
• There are two functions that

should be implemented for
all classes: constructs and
destructors.

• Constructors are used to
initialize instances of a
class.

• If we don’t declare one,
compiler implicitly produces
a default one.

￼18

Everything after
this will be public.

These are private.

1. A constructor has
no return type.

2. A constructor must
have the same name
as its class.

 ECE 220 - Fall 2024 Dr. Ivan Abraham

This pointer
• Remember methods are shared

between all instances of a
class. However, each instance
keeps its own copy of the data.

• When we invoke a method on a
particular object/instance of a
class, we need a way to refer to
that particular instance’s copy
of the data.

• This is accomplished using the
this pointer.

￼19

class Student{
 char name[74];
 unsigned long UIN;
 unsigned int year;
 float GPA;

public:
 Student(char const *name, unsigned int UIN,
 unsigned int year, float GPA);
};

Student::Student(char const *name,
 unsigned int UIN,
 unsigned int year,
 float GPA){
 strcpy(this->name, name);
 this->UIN = UIN;
 this->year = year;
 this->GPA = GPA;
}

 ECE 220 - Fall 2024 Dr. Ivan Abraham ￼20

Constructors
class Student{
 char name[74];
 unsigned long UIN;
 unsigned int year;
 float GPA;

public:
 Student(char const *name,
 unsigned int UIN,
 unsigned int year,
 float GPA);

};

Student::Student(char const *name,
 unsigned int UIN,
 unsigned int year,
 float GPA){
 strcpy(this->name, name);
 this->UIN = UIN;
 this->year = year;
 this->GPA = GPA;
}

int main(void){
 Student s1 = Student(“Garfield", 123456, 6, 3.5);
 cout << s1.name << " is an excellent student!" << endl;
 cout << "Their GPA is: " << s1.GPA << endl;
}

Still not correct. We cannot access
the private members.

• Solutions?

• Write a function to print details of a
student out.

• Write getters and setters.

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Getters …

￼21

include <iostream>
using namespace std;

class Student{
 char name[74];
 unsigned long UIN;
 unsigned int year;
 float GPA;

public:
 Student(char const *name,
 unsigned int UIN,
 unsigned int year,
 float GPA);

 float get_GPA();
 char const * get_name();
};

Student::Student(char const *name, unsigned int UIN,
 unsigned int year, float GPA){
 strcpy(this->name, name);
 this->UIN = UIN;
 this->year = year;
 this->GPA = GPA;
}

float Student::get_GPA(){
 return this->GPA;
}

char const * Student::get_name(){
 return this->name;
}

int main(void){
 Student s1 = {"Garfield", 123456, 6, 3.5};
 cout<<s1.get_name()<<" is an excellent student!"<<endl;
 cout<<"Their GPA is: "<<s1.get_GPA()<<endl;
}

 ECE 220 - Fall 2024 Dr. Ivan Abraham

… and setters

￼22

include <iostream>
using namespace std;

class Student{
 char name[74];
 unsigned long UIN;
 unsigned int year;
 float GPA;

public:
 Student(char const *name,
 unsigned int UIN,
 unsigned int year,
 float GPA);

 float get_GPA();
 char const * get_name();
 void set_GPA(float gpa);
};

Student::Student(char const *name, unsigned int UIN,
 unsigned int year, float GPA){
 name = name;
 UIN = UIN;
 year = year;
 GPA = GPA;
}

float Student::get_GPA(){
 return this->GPA;
}

char const * Student::get_name(){
 return this->name;
}

void Student::set_GPA(float gpa){
 this->GPA = gpa;
}

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Member functions

• Member functions also called methods are functions that are
part of a class

Private vs. public members

• private members can only be accessed by member functions
(default)

• public members can be accessed by anyone

Constructors & destructor

• special member functions that creates and deletes an object
(when it goes outside of scope)

￼23

Classes - summary so far …

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Summary - constructors
 A special method which is invoked automatically at the time of
object creation.

• Used to initialize the data members.

• It has the same name as class.

• Two types: default constructor & user defined constructor.

• Overloading and default arguments are possible.

• Has no return value; not even void.

￼24

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Destructors
• Destructor is a member function that destroys an object.

• It is called automatically when the object goes out of scope.

• It has the same name as class, but prefixed with ~.

• No argument (overloading and default arguments are not
possible).

• No return value.

• Primary use: de-allocate memory!

￼25

More on this in the exercise!

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Operator overloading

￼26

#include<iostream>
using namespace std;

class Complex{
 double real;
 double imag;

public:
 Complex(double real, double imag){
 this->real = real;
 this->imag = imag;
 }

 void print(){
 cout<<"(" <<this->real<<" + "<<this->imag<<")";
 }
};

int main(){
 Complex c1 = Complex(2, 4);
 Complex c2 = Complex(3, -5);
 Complex c3 = c1 + c2;
}

Wouldn’t it be nice if we could
do something like that?

C++ allows you to
overload standard
operators so that you
can use them with your
classes.

 ECE 220 - Fall 2024 Dr. Ivan Abraham

#include<iostream>
using namespace std;

class Complex{
 double real;
 double imag;

public:
 Complex(double real, double imag){
 this->real = real;
 this->imag = imag;
 }

 void print(){
 cout<<"(" <<this->real<<" + "<<this->imag<<")";
 }

Complex operator+(Complex c){
 return Complex(this->real + c.real, this->imag + c.imag);
 }
};

Operator overloading

￼27

int main(){
 Complex c1 = Complex(2, 4);
 Complex c2 = Complex(3, -5);
 Complex c3 = c1 + c2;
}

Just write a function of this form to enable

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Exercise(s)

￼28

• Overload the multiplication operator to multiply two complex
numbers.

• Implement a linked lists in C++ using classes.

