ECE 220

Lecture x0010 - 10/22/24
Dynamic Memory Allocation

Slides based on material originally by: Yuting Chen & Thomas Moon

ECE 220 - Fall 2024 ILLINOIS

Announcements

e Midterm 2 will be held on e Check HKN website:
10/31 https://hkn.illinois.edu/
services for review session

* The conflict exam sign-up
link Is live Thursday’s lecture by Mike

Montano.
* Deadline is Sunday on
the week of the exam.

* Practice material is posted

UNIVERSITY OF

ILLINOIS

ECE 220 - Fall 2024

https://hkn.illinois.edu/services
https://hkn.illinois.edu/services

Recap

e | ast few weeks Pointers to structs
e Streams, buffers, queue e Structs within structs
(FIFO)
* Passing structs in
e File I/0O, formatted IO functions
o Structs * Writing structs to files
* Arrays of structs Examples

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Exercise

* Last time we wrote a function to write flight details to a binary file
and then we read the data back from the file.

 Modify airport 1.c code from last time to now use functions to
A. write struct to file

B. load struct from file

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Dynamic memory allocation

 We ask for N, the number of planes each time to set up the loops.
Nevertheless the array size is fixed at 10.

 |f usually only ~3 flights, then memory is wasted.

* If we read in a large file >50 then not enough memory is
allocated.

* |deally, we want to allocate as much memory as needed rather than
a pre-set amount.

* In most cases, this memory comes from an area of the architecture
called the heap.

ECE 220 - Fall 2024 ILLINOIS

Dynamic memory allocation

xC0O0C

System space

* During the execution, a program makes a -

Program text

request to the memory allocator for a e
contiguous piece of memory of a particular

S i Ze (for dynamically allocated memory)

* The allocator reserves the memory and !
returns a pointer to it. We interact with the

memory allocation manager by using malloc T
family & free functions. o - R (rame paner

System space

XFFFF

ILLINOIS

ECE 220 - Fall 2024

Automatic vs dynamic memory

xC000
System space
Automatic Dynamic
< - PC
Program text
< R4
. . . Global data section
Mechanism Automatic Use malloc family
Heap
(for dynamically allocated memory)
Compiler makes decisions; Programmer makes
Lifetime variables “die” when functions decision, must use
& blocks end free () to deallocate
Location Stack or global data area Heap T
<+ - RE (Stack painter)
<+ - RS (Frame pointer)
Run-time stack
Fixed Adjustable
System space
xFFFF

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

The malloc function

vold *malloc(size t size)

 Parameters
 size: Number of bytes to allocate

e size t: Atype defined in the user library ~ unsigned integer

* Return value: NULL (failure) or pointer to beginning of allocated
block (success).

htitps://en.cppreference.com/w/c/memory/malloc

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

http://en.cppreference.com/w/c/types/size_t
https://en.cppreference.com/w/c/memory/malloc

Using malloc

 Memory allocated by malloc is not initialized (there could be
garbage values or leftover values).

e Jousemalloc, we need to know how many bytes to allocate. The
sizeof operator asks the compiler to calculate the size of a

particular type.

* We also need to change the type of the return value to the proper
kind of pointer- this is called “casting”.

malloc returns void pointer

Standard pointer |. _ : : :
declaration ‘1nt *ptr‘ = (1nt *) malloc(sizeof(int));

Juxtaposition with (int *) casts the void pointer as an int pointer

ILLINOIS

ECE 220 - Fall 2024

The free function

vold free(void *ptr)

e Parameters

e *ptr: Pointer to beginning of block to be deallocated. Should
have been generated by the malloc family.

« Memory allocated via malloc must be deallocated via free or
reallocated via realloc to prevent memory leaks!

 Use valgrind to check for memory leaks

https://valgrind.orqg/

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

The calloc function

voilid *calloc(size t n items, size t i1tem size)

e Parameters
e size: Number of items to be allocated

» item size: Size of each item

 Return value: NULL (failure) or pointer to beginning of allocated
block (success).

e |dentical to malloc, except calloc Initializes memory to zero.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

http://en.cppreference.com/w/c/types/size_t
http://en.cppreference.com/w/c/types/size_t

The realloc function

vold *realloc(volid *ptr, size t size)

 Parameters
 ptr: Pointer to memory block to be reallocated

e size: New size of block

* Return value: NULL (failure) or pointer to beginning of allocated
block (success).

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

http://en.cppreference.com/w/c/types/size_t

void *malloc(size t size) volid free(void *ptr)

The realloc function

vold *realloc(volid *ptr, size t size)

* The content of the memory block is preserved, even if the block is
moved to a new location (if the new size is larger than the old size,
the added memory will not be initialized).

e If ptris NULL, it is same as malloc
e If sizeis 0 and ptr is not NULL, implementation dependent!

 ptr must have been returned by the malloc family

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

http://en.cppreference.com/w/c/types/size_t
http://en.cppreference.com/w/c/types/size_t

Example of malloc & free

e Casting:

int *ptr = (int *) malloc(sizeof(int));
Flight *ptr = (Flight *) malloc(numFlight*sizeof(Flight));

 Why: recall C is statically typed; so compiler needs to know what
type to assign to allocated memory locations.

o Sorta-kinda a fib (C can tell by looking at LHS, but C++ won’t)

* Types can be built-in or user-defined.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Example of malloc & free

int main(){
int *ptrl = (int *) malloc(sizeof(int));

1f(ptrl==NULL) {
printf("Error - malloc failure\n");

return -1;

}

*ptrl = 10;

int *ptr2 = (int *) malloc(sizeof(int));
*ptr2 = 5;

What is wrong with this code?

Didn’t free memory allocated!

ILLINOIS

ECE 220 - Fall 2024

Example of malloc & free

int main(){
int *ptrl = (int *) malloc(sizeof(int));
if (ptrl==NULL){
printf ("Error - malloc failure\n");
return -1;

}

*ptrl = 10;

int *ptr2 = (int *) malloc(sizeof(int));

*ptr2 = 5;

ptrl = ptr2; <« S

free(ptrl); - wap This one frees the memory, but
tree(ptrz); has a bug. What should we do?

ECE 220 - Fall 2024 ILLINOIS

Example of realloc

int *ptr;
int *ptr new;

// What does this code do?
ptr = (int *) calloc(2, sizeof(int));

*ptr = 10;

// What is the contents of memory now?

ptr new = (int *) realloc(ptr, 4*sizeof(int));
*(ptr new+2) = 30;
*(ptr new+3) = 40;

// How much memory are we deallocating here?
free(ptr new)

Do we need free(ptr)?
ECE 220 - Fall 2024 ILLINOIS

Allocating 2D arrays

* Here is one method of allocating 2D arrays:

FILE *infile = fopen("mat.csv", "r");
int nr, nc;

fscanf(infile, "%d, %d", &nr, &nc);
int *mat = (int *) malloc(sizeof(int)*nr#*nc);

for (int i=0; i < nr; i++)
(int J=0; Jj< nc; J++)

fscanf(infile, "%d, ", &mat[i*nc+j]);

fclose(infile);

ECE 220 - Fall 2024 ILLINOIS

Allocating 2D arrays - another way

int X

 Recall pointers to pointers? x1234
int *p

int x = 10; x5678 | x1234

int *p = &x;

int **pp = &p; [int **pp
x5678

xABCD

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Allocating 2D arrays - another way

* Recall pointers to pointers?

e \We can use that:

int **array;

array = (int**) malloc(nrows*sizeof(int#*));
(1=0;1<nrows;i++)
array[1] = (int?*) malloc(ncols*sizeof(int));
array[0][0] = 3;

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Allocating 2D arrays - another way

int **array;

array = (i1nt**) malloc(nrows*sizeof(int¥*));
(1=0;1<nrows; i++)
array[1] = (int*) malloc(ncols*sizeof(int));
array[0][0] = 3;

array _

Nrows

ncols

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Pointer to pointer - caveat

* How do you deallocate a 2D array?

« Method 1: Free the single pointer: int * mat

« Method 2: Need to free each pointer separately!!

* Not enough to free the top level pointer (int **array)

 Unless made free, lower level pointers (int *) will leak
memory!

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Exercise

e Use this second method of memory allocation for 2D arrays to
read in a given file (matrix.csv) and print out its transpose.

e The first row of the file lists the number of rows and columns of the
mautrix.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Aside: Variable Length Arrays

* You could still define an array size void fun(int n)
using user input. {
int arr[n];

* Array still allocated on the stack /* More code follows

 Mechanism is far more

complicated }*/

» Still cannot modify size after int main()

definition fun(6) :

}

* We pay that performance overhead
for convenience

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Example with valgrind

#include <stdio.h>

#include <stdlib.h> Get on to EWS. Compile
the standard way. Then
int main(void) { _
char *p; run.
/* Allocation #1 of 19 bytes */ > valgrind ./a.out

p = (char *) malloc(19);
. :
/* Allocation #2 of 12 bytes */ Can you flgure out where

free(p);

/* Allocation #3 of 16 bytes */
p = (char *) malloc(1l6);

return O;

ECE 220 - Fall 2024 ILLINOIS

Exercise

e Recall how to use malloc for our struct

Flight *ptr = (Flight *) malloc(numFlight*sizeof(Flight));

* Write a function to read the provided binary file and return a struct
containing the n-th flight record. Discard the first n-1.

Flight * nth flight(char *filename, int num total, int N)

 Make sure to free memory!

ECE 220 - Fall 2024 ILLINOIS

Next time - important

e So far our use of malloc has been to load records or data from a
file

 Thus we no longer have to know the sizes at compile time

* Nevertheless realloc/malloc/free Is cumbersome to keep
using

* Need a data structure that takes care of this automatically -
enter linked-lists.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Time permitting - key idea

» Basic idea of a linked list: Thursaay - learn
it from the
typedef struct node({ GOAT!

char #*name;
struct node * next;
}node;

e Definition Is recursive; a node Is
either

e NULL or

e Contains a reference to another
node

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

