
 ECE 220 - Fall 2024 Dr. Ivan Abraham

ECE 220
Lecture x0010 - 10/22/24

Dynamic Memory Allocation

Slides based on material originally by: Yuting Chen & Thomas Moon

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Announcements
• Midterm 2 will be held on

10/31

• The conflict exam sign-up
link is live

• Deadline is Sunday on
the week of the exam.

• Practice material is posted

• Check HKN website:
https://hkn.illinois.edu/
services for review session

• Thursday’s lecture by Mike
Montano.

￼2

https://hkn.illinois.edu/services
https://hkn.illinois.edu/services

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Recap
• Last few weeks

• Streams, buffers, queue
(FIFO)

• File I/O, formatted IO

• Structs

• Arrays of structs

• Pointers to structs

• Structs within structs

• Passing structs in
functions

• Writing structs to files

• Examples

￼3

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Exercise

• Last time we wrote a function to write flight details to a binary file
and then we read the data back from the file.

• Modify airport_1.c code from last time to now use functions to

A. write struct to file

B. load struct from file

￼4

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Dynamic memory allocation
• We ask for N, the number of planes each time to set up the loops.

Nevertheless the array size is fixed at 10.

• If usually only ~3 flights, then memory is wasted.

• If we read in a large file >50 then not enough memory is
allocated.

• Ideally, we want to allocate as much memory as needed rather than
a pre‐set amount.

• In most cases, this memory comes from an area of the architecture
called the heap.

￼5

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Dynamic memory allocation

• During the execution, a program makes a
request to the memory allocator for a
contiguous piece of memory of a particular
size

• The allocator reserves the memory and
returns a pointer to it. We interact with the
memory allocation manager by using malloc
family & free functions.

￼6

 ECE 220 - Fall 2024 Dr. Ivan Abraham ￼7

Automatic Dynamic

Mechanism Automatic Use malloc family

Lifetime
Compiler makes decisions;

variables “die” when functions
& blocks end

Programmer makes
decision, must use

free() to deallocate

Location Stack or global data area Heap

Size Fixed Adjustable

Automatic vs dynamic memory

 ECE 220 - Fall 2024 Dr. Ivan Abraham

The malloc function
void *malloc(size_t size)

• Parameters

• size: Number of bytes to allocate

• size_t: A type defined in the user library ~ unsigned integer

• Return value: NULL (failure) or pointer to beginning of allocated
block (success).

￼8
https://en.cppreference.com/w/c/memory/malloc

http://en.cppreference.com/w/c/types/size_t
https://en.cppreference.com/w/c/memory/malloc

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Using malloc
• Memory allocated by malloc is not initialized (there could be

garbage values or leftover values).

• To use malloc, we need to know how many bytes to allocate. The
sizeof operator asks the compiler to calculate the size of a
particular type.

• We also need to change the type of the return value to the proper
kind of pointer‐ this is called “casting”.

￼9

int *ptr = (int *) malloc(sizeof(int));Standard pointer
declaration

malloc returns void pointer

Juxtaposition with (int *) casts the void pointer as an int pointer

 ECE 220 - Fall 2024 Dr. Ivan Abraham

The free function
void free(void *ptr)

• Parameters

• *ptr: Pointer to beginning of block to be deallocated. Should

have been generated by the malloc family.

• Memory allocated via malloc must be deallocated via free or
reallocated via realloc to prevent memory leaks!

• Use valgrind to check for memory leaks

￼10
https://valgrind.org/

 ECE 220 - Fall 2024 Dr. Ivan Abraham ￼11

The calloc function
void *calloc(size_t n_items, size_t item_size)

• Parameters

• size: Number of items to be allocated

• item_size: Size of each item

• Return value: NULL (failure) or pointer to beginning of allocated
block (success).

• Identical to malloc, except calloc initializes memory to zero.

http://en.cppreference.com/w/c/types/size_t
http://en.cppreference.com/w/c/types/size_t

 ECE 220 - Fall 2024 Dr. Ivan Abraham ￼12

The realloc function
void *realloc(void *ptr, size_t size)

• Parameters

• ptr: Pointer to memory block to be reallocated

• size: New size of block

• Return value: NULL (failure) or pointer to beginning of allocated
block (success).

http://en.cppreference.com/w/c/types/size_t

 ECE 220 - Fall 2024 Dr. Ivan Abraham ￼13

The realloc function
void *realloc(void *ptr, size_t size)

• The content of the memory block is preserved, even if the block is
moved to a new location (if the new size is larger than the old size,
the added memory will not be initialized).

• If ptr is NULL, it is same as malloc

• If size is 0 and ptr is not NULL, implementation dependent!

• ptr must have been returned by the malloc family  

void free(void *ptr)void *malloc(size_t size)

http://en.cppreference.com/w/c/types/size_t
http://en.cppreference.com/w/c/types/size_t

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Example of malloc & free
• Casting:

int *ptr = (int *) malloc(sizeof(int));
Flight *ptr = (Flight *) malloc(numFlight*sizeof(Flight));

• Why: recall C is statically typed; so compiler needs to know what
type to assign to allocated memory locations.

• Sorta-kinda a fib (C can tell by looking at LHS, but C++ won’t)

• Types can be built-in or user-defined.

￼14

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Example of malloc & free

￼15

int main(){
int *ptr1 = (int *) malloc(sizeof(int));
if(ptr1==NULL){
printf("Error ‐ malloc failure\n");
return ‐1;

}
*ptr1 = 10;
int *ptr2 = (int *) malloc(sizeof(int));  
*ptr2 = 5;

}

What is wrong with this code?

Didn’t free memory allocated!

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Example of malloc & free

￼16

int main(){
int *ptr1 = (int *) malloc(sizeof(int));
if(ptr1==NULL){
printf("Error ‐ malloc failure\n");
return ‐1;

}
*ptr1 = 10;
int *ptr2 = (int *) malloc(sizeof(int));  
*ptr2 = 5;

ptr1 = ptr2;
free(ptr1);
free(ptr2);

}

This one frees the memory, but
has a bug. What should we do?

Swap

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Example of realloc

￼17

int *ptr;
int *ptr_new;

// What does this code do?
ptr = (int *) calloc(2, sizeof(int));
*ptr = 10;

// What is the contents of memory now?
ptr_new = (int *) realloc(ptr, 4*sizeof(int));
*(ptr_new+2) = 30;  
*(ptr_new+3) = 40;

// How much memory are we deallocating here?
free(ptr_new)

Do we need free(ptr)?

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Allocating 2D arrays
• Here is one method of allocating 2D arrays:

￼18

 FILE *infile = fopen("mat.csv", "r");
 int nr, nc;

 fscanf(infile, "%d, %d", &nr, &nc);
 int *mat = (int *) malloc(sizeof(int)*nr*nc);

 for (int i=0; i < nr; i++)
 for (int j=0; j< nc; j++)
 fscanf(infile, "%d, ", &mat[i*nc+j]);

 fclose(infile);

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Allocating 2D arrays - another way

• Recall pointers to pointers?

int x = 10;
int *p = &x;
int **pp = &p;

￼19

int *p

x5678

xABCD

int x

x1234 10

x1234
int **pp

x5678

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Allocating 2D arrays - another way

￼20

• Recall pointers to pointers?

• We can use that:

int **array;  

array = (int**) malloc(nrows*sizeof(int*));
for(i=0;i<nrows;i++)
array[i] = (int*) malloc(ncols*sizeof(int));

array[0][0] = 3;
…

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Allocating 2D arrays - another way

￼21

int **array;  

array = (int**) malloc(nrows*sizeof(int*));
for(i=0;i<nrows;i++)
array[i] = (int*) malloc(ncols*sizeof(int));

array[0][0] = 3;

nr
ow

sarray

ncols

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Pointer to pointer - caveat
• How do you deallocate a 2D array?

• Method 1: Free the single pointer: int * mat

• Method 2: Need to free each pointer separately!!

• Not enough to free the top level pointer (int **array)

• Unless made free, lower level pointers (int *) will leak
memory!

￼22

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Exercise

• Use this second method of memory allocation for 2D arrays to
read in a given file (matrix.csv) and print out its transpose.

• The first row of the file lists the number of rows and columns of the
matrix.

￼23

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Aside: Variable Length Arrays
• You could still define an array size

using user input.

• Array still allocated on the stack

• Mechanism is far more
complicated

• Still cannot modify size after
definition

• We pay that performance overhead
for convenience

￼24

void fun(int n)
{
 int arr[n];
 /* More code follows
 ...
 ...
 */
}
int main()
{
 fun(6);
}

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Example with valgrind

￼25

#include <stdio.h>
#include <stdlib.h>

int main(void){
 char *p;

 /* Allocation #1 of 19 bytes */
 p = (char *) malloc(19);

 /* Allocation #2 of 12 bytes */
 p = (char *) malloc(12);
 free(p);

 /* Allocation #3 of 16 bytes */
 p = (char *) malloc(16);

 return 0;
}

• Get on to EWS. Compile
the standard way. Then
run:

> valgrind ./a.out

• Can you figure out where
the leaks are?

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Exercise
• Recall how to use malloc for our struct

Flight *ptr = (Flight *) malloc(numFlight*sizeof(Flight));

• Write a function to read the provided binary file and return a struct
containing the n-th flight record. Discard the first n-1.

Flight * nth_flight(char *filename, int num_total, int N)

• Make sure to free memory!

￼26

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Next time - important
• So far our use of malloc has been to load records or data from a

file

• Thus we no longer have to know the sizes at compile time

• Nevertheless realloc/malloc/free is cumbersome to keep
using

• Need a data structure that takes care of this automatically -
enter linked-lists.

￼27

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Time permitting - key idea
• Basic idea of a linked list:

typedef struct node{
 char *name;
 struct node * next;
}node;

• Definition is recursive; a node is
either

• NULL or

• Contains a reference to another
node

￼28

Thursday - learn
it from the

GOAT!

