ECE 220

Lecture xO0O0F - 10/17

ECE 220 - Fall 2024

Recap/reminders

ECE 220 - Fall 2024

Recap/reminders

e | ast time

ECE 220 - Fall 2024

Recap/reminders

e | ast time

e Streams & buffers

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Recap/reminders

e | ast time

e Streams & buffers

* File I/O

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Recap/reminders

e | ast time

e Streams & buffers

* File I/O

e Formatted I/O

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Recap/reminders

e | ast time

e Streams & buffers

e File /0O
e Formatted I/O

» Examples

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Recap/reminders

e | ast time e Reminders

e Streams & buffers

e File /0O
e Formatted I/O

» Examples

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Recap/reminders

e | ast time e Reminders

e Streams & buffers e This lecture concludes

material for MT2
e Filel/O

e Formatted I/O

» Examples

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Recap/reminders

e | asttime e Reminders
e Streams & buffers e This lecture concludes
material for MT2
e Filel/O
e MT2 is on 10/31, plan
e Formatted I/0O ahead
» Examples

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Recap/reminders

e | asttime e Reminders
e Streams & buffers e This lecture concludes
material for MT2
e Filel/O
e MT2 is on 10/31, plan
e Formatted I/O ahead
« Examples Drop-deadline is tomorrow

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Exercise

UNIVERSITY OF

ECE 220 - Fall 2024 See gitlab for answers after lecture ILLINOIS

Exercise

* Write a function to transpose a
given TSV file and write the
output to transposed.tsv

ECE 220 - Fall 2024 See gitlab for answers after lecture ILLINOIS

Exercise

* Write a function to transpose a
given TSV file and write the
output to transposed.tsv

 The number of rows and
columns will be present as
the first line of the input file:
records.tsv

ECE 220 - Fall 2024

UNIVERSITY OF

See gitlab for answers after lecture ILLINOIS

Exercise

* Write a function to transpose a
given TSV file and write the
output to transposed.tsv

 The number of rows and
columns will be present as
the first line of the input file:
records.tsv

e TSV stands for Tab-
Separated-Values.

ECE 220 - Fall 2024

UNIVERSITY OF

3

See gitlab for answers after lecture

ILLINOIS

Exercise

* Write a function to transpose a 4 3
given TSV file and write the zariski 99 Monday
output to transposed.tsv Newton 43 Sunday

Russel 72 Saturday

Maxwell 32 Wednesday
e The number of rows and

columns will be present as
the first line of the input file:
records.tsv

e TSV stands for Tab-
Separated-Values.

ECE 220 - Fall 2024 See gitlab for answers after lecture ILLINOIS

Exercise

* Write a function to transpose a 4 3
given TSV file and write the zariski 99 Monday
output to transposed.tsv Newton 43 Sunday

Russel 72 Saturday

Maxwell 32 Wednesday
e The number of rows and

columns will be present as
the first line of the input file:
records.tsv

e TSV stands for Tab-
Separated-Values.

ECE 220 - Fall 2024 See gitlab for answers after lecture ILLINOIS

Exercise

* Write a function to transpose a 4 3
given TSV file and write the zariski 99 Monday
output to transposed.tsv Newton 43 Sunday

Russel 72 Saturday
Maxwell 32 Wednesday
 The number of rows and

columns will be present as
the first line of the input file:
records.tsv

3 4
Zariski Newton Russel Maxwell
* TSV stands for Tab- 09 43 72 32

Separated-Values. Monday Sunday Saturday Wednesday

ECE 220 - Fall 2024 See gitlab for answers after lecture ILLINOIS

Exercise

UNIVERSITY OF

ECE 220 - Fall 2024 See gitlab for answers after lecture ILLINOIS

Exercise

« How about comma-separated values? Let us transpose a matrix
stored on disk and write it back to disk.

ECE 220 - Fall 2024 See gitlab for answers after lecture ILLINOIS

Exercise

« How about comma-separated values? Let us transpose a matrix
stored on disk and write it back to disk.

 The input matrix is in file mat . csv with the first line specifying the
number of rows and columns in the matrix.

UNIVERSITY OF

ECE 220 - Fall 2024 See gitlab for answers after lecture ILLINOIS

Exercise

« How about comma-separated values? Let us transpose a matrix
stored on disk and write it back to disk.

 The input matrix is in file mat . csv with the first line specifying the
number of rows and columns in the matrix.

* Write output to file t mat.csv.

UNIVERSITY OF

See gitlab for answers after lecture ILLINOIS

ECE 220 - Fall 2024 4

Introduction to structs

ECE 220 - Fall 2024

Introduction to structs

» Often useful to the programmer to combine pieces of information
into a single abstract unit

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Introduction to structs

» Often useful to the programmer to combine pieces of information
into a single abstract unit

 Example(s)

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Introduction to structs

» Often useful to the programmer to combine pieces of information
into a single abstract unit

 Example(s)

o A student could have a name (char[801]), UIN (unsigned
long int), year (unsigned int)and GPA (float)

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Introduction to structs

» Often useful to the programmer to combine pieces of information
into a single abstract unit

 Example(s)

o A student could have a name (char[801]), UIN (unsigned
long int), year (unsigned int)and GPA (float)

e A flight could have an altitude (unsigned int), latitude
(float), longitude (f1loat), airspeed (f1loat) and airline code
(char[20])

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Introduction to structs

ECE 220 - Fall 2024

Introduction to structs

* Achieved by letting the programmer create their own data type
using the struct keyword.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Introduction to structs

* Achieved by letting the programmer create their own data type
using the struct keyword.

 Examples:

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Introduction to structs

* Achieved by letting the programmer create their own data type
using the struct keyword.

 Examples:

struct student({
char name[80];
unsigned long UIN;
unsigned 1nt year;
float GPA;

b

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Introduction to structs

* Achieved by letting the programmer create their own data type
using the struct keyword.

 Examples:

struct f£lightType{
char f£lightCode[20];
unsigned int altitude;

struct student({
char name[80];

it
g y / float latitude;
float GPA;

. float airSpeed;
’ }i

ECE 220 - Fall 2024 ILLINOIS

Defining structs

struct flightType{
char flightCode[20];
unsigned int altitude;
float longitude;
float latitude;
unsigned float alrSpeed;

}r

ECE 220 - Fall 2024

Defining structs

struct flightType{ e A struct allows the user to
char flightCode[20];

. . . define a new data type that
unsigned 1int altitude;

float longitude: groups together items of types

float latitude; that are already defined.
unsigned float airSpeed;

}r

ECE 220 - Fall 2024

ILLINOIS

Defining structs

struct £lightType(e A struct allows the user to
char tlightCode[20]; define a new data type that
unsigned int altitude; ' ther it £t
float longitude; groups together | ems of types
float latitude; that are already defined.

unsigned float airSpeed;

b * Defining a struct tells the

compiler

ECE 220 - Fall 2024

ILLINOIS

Defining structs

struct £lightType(e A struct allows the user to
char tlightCode[20]; define a new data type that
unsigned int altitude; ' ther it £t
float longitude; groups together | ems of types
float latitude; that are already defined.

unsigned float airSpeed;

}r

» * Defining a struct tells the
compiler

ECE 220 - Fall 2024

ILLINOIS

Defining structs

struct £lightType(e A struct allows the user to
char tlightCode[20]; define a new data type that
unsigned int altitude; ' ther it £t
float longitude; groups together | ems of types
float latitude; that are already defined.

unsigned float airSpeed;

}r

» * Defining a struct tells the
compiler

* How big the struct is ...

ECE 220 - Fall 2024

ILLINOIS

Defining structs

struct £lightType(e A struct allows the user to
char tlightCode[20]; define a new data type that
unsigned int altitude; ' ther it £t
float longitude; groups together | ems of types
float latitude; that are already defined.

unsigned float airSpeed;

}r

» * Defining a struct tells the
compiler

* How big the struct is ...

* How to lay items out In
memory ...

ECE 220 - Fall 2024

ILLINOIS

Defining structs

struct flightType(e A struct allows the user to
char tlightCode[20]; define a new data type that
unsigned 1int altitude; ; th + £ 1
float longitude: groups together | ems of types
float latitude: that are already defined.
unsigned float airSpeed;

bi » « Defining a struct tells the

compiler

However ... no memory * How big the struct is ...

allocated yet! | |
* How to lay items out In

memory ...

ECE 220 - Fall 2024 ILLINOIS

struct flightType({
char flightCode[20];
unsigned int altitude;
float longitude;
float latitude;
unsigned float airSpeed;

Using structs

ECE 220 - Fa" 2024 E UNIVERSITY OF

ILLINOIS

URLANA AVFAIGH

struct flightType({
char flightCode[20];
unsigned int altitude;
float longitude;
float latitude;
unsigned float airSpeed;

Using structs

* Memory is only allocated when
variables are created using the
newly defined type.

ECE 220 - Fall 2024

ILLINOIS

struct flightType({
char flightCode[20];
unsigned int altitude;
float longitude;
float latitude;
unsigned float airSpeed;

Using structs

* Memory is only allocated when
variables are created using the
newly defined type.

struct flightType plane;

ECE 220 - Fall 2024

ILLINOIS

struct flightType({
char flightCode[20];
unsigned int altitude;
float longitude;
float latitude;
unsigned float airSpeed;

Using structs

* Memory is only allocated when
variables are created using the
newly defined type.

struct flightType plane;
struct student sl;

ECE 220 - Fall 2024

ILLINOIS

struct flightType({
char flightCode[20];
unsigned int altitude;
float longitude;
float latitude;
unsigned float airSpeed;

Using structs

* Memory is only allocated when
variables are created using the
newly defined type.

struct flightType plane;
struct student sl;

 Elements of a struct are called
its members. Members can be
accused using the “dot”
notation.

ECE 220 - Fall 2024 ILLINOIS

struct flightType({
char flightCode[20];
unsigned int altitude;
float longitude;
float latitude;
unsigned float airSpeed;

Using structs

* Memory is only allocated when
variables are created using the
newly defined type.

struct flightType plane;
struct student sl;

 Elements of a struct are called
its members. Members can be
accused using the “dot”
notation.

plane.altitude = 1000;

ECE 220 - Fall 2024 ILLINOIS

struct flightType({
char flightCode[20];
unsigned int altitude;
float longitude;
float latitude;
unsigned float airSpeed;

Using structs

* Memory is only allocated when
variables are created using the
newly defined type.

struct flightType plane;
struct student sl;

e Elements of a struct are called
its members. Members can be
accused using the “dot”

notation.
plane.altitude = 1000;
plane.airspeed = 800.0;

ECE 220 - Fall 2024 ILLINOIS

struct flightType({
char flightCode[20];
unsigned int altitude;
float longitude;
float latitude;
unsigned float airSpeed;

Using structs

 Memory is only allocated when ¢ struct variables can also be
variables are created using the initialized at declaration.
newly defined type.

struct flightType plane;
struct student sl;

e Elements of a struct are called
its members. Members can be
accused using the “dot”

notation.
plane.altitude = 1000;
plane.airspeed = 800.0;

ECE 220 - Fall 2024 ILLINOIS

struct flightType({
char flightCode[20];
unsigned int altitude;
float longitude;
float latitude;
unsigned float airSpeed;

Using structs

 Memory is only allocated when ¢ struct variables can also be
variables are created using the initialized at declaration.
newly defined type.

struct student sl = {“Garfield”,

struct flightType plane; 123456, 6, 3.5};

struct student sl;

e Elements of a struct are called
its members. Members can be
accused using the “dot”

notation.
plane.altitude = 1000;
plane.airspeed = 800.0;

ECE 220 - Fall 2024 ILLINOIS

struct flightType({
char flightCode[20];
unsigned int altitude;
float longitude;
float latitude;
unsigned float airSpeed;

Using structs

 Memory is only allocated when ¢ struct variables can also be
variables are created using the initialized at declaration.
newly defined type.

struct student sl = {“Garfield”,

struct flightType plane; 123456, 6, 3.5};

struct student sl;
* Also possible to create arrays of
 Elements of a struct are called structs
its members. Members can be
accused using the “dot”

notation.
plane.altitude = 1000;
plane.airspeed = 800.0;

ECE 220 - Fall 2024 ILLINOIS

struct flightType({
char flightCode[20];
unsigned int altitude;
float longitude;
float latitude;
unsigned float airSpeed;

Using structs

 Memory is only allocated when ¢ struct variables can also be
variables are created using the initialized at declaration.
newly defined type.

struct student sl = {“Garfield”,

struct flightType plane; 123456, 6, 3.5};

struct student sl;
* Also possible to create arrays of
 Elements of a struct are called structs
its members. Members can be

_ struct student BL3[2] = {sl,
accused using the “dot”

notation.
plane.altitude = 1000;
plane.airspeed = 800.0;

ECE 220 - Fall 2024 ILLINOIS

struct flightType({
char flightCode[20];
unsigned int altitude;
float longitude;
float latitude;
unsigned float airSpeed;

Using structs

 Memory is only allocated when ¢ struct variables can also be
variables are created using the initialized at declaration.
newly defined type.

struct student sl = {“Garfield”,

struct flightType plane; 123456, 6, 3.5};

struct student sl;
* Also possible to create arrays of

 Elements of a struct are called structs
its members. Members can be struct student BL3[2] = {sl,
accused using the “dot” {"Scooby", 234578164, 2, 4.0}};
notation.
plane.altitude = 1000;
plane.airspeed = 800.0;

ECE 220 - Fall 2024 ILLINOIS

struct flightType({
char flightCode[20];
unsigned int altitude;
float longitude;
float latitude;
unsigned float airSpeed;

Using structs

 Memory is only allocated when ¢ struct variables can also be
variables are created using the initialized at declaration.
newly defined type.

struct student sl = {“Garfield”,

struct flightType plane; 123456, 6, 3.5};

struct student sl;
* Also possible to create arrays of

 Elements of a struct are called structs
its memberg. Members can be struct student BL3[2] = {sl,
accused using the “dot” {"Scooby", 234578164, 2, 4.0}};
notation. printf(“Name 1s %s”, BL3[1l].name);
plane.altitude = 1000;
plane.airspeed = 800.0;

ECE 220 - Fall 2024 ILLINOIS

Memory mapping

ECE 220 - Fall 2024

Memory mapping

« How many bytes of memory
should one instance of
student take?

struct student({
char name[80];
unsigned long UIN;
unsigned 1nt year;
float GPA;

}r

struct student sl =
{“Garfield”, 123456, 6, 3.5}

ECE 220 - Fall 2024 ILLINOIS

« How many bytes of memory

should one instance of
student take?

struct student({
char name[80];
unsigned long UIN;
unsigned 1nt year;
float GPA;

}r

struct student sl =
{“Garfield”, 123456, 6,

3.5}

Memory mapping

123456

6

3.5

s1.name[0]

s1.name[1]

s1.name[78]

s1.name[79]
s1.UIN
s1.year

s1.gpa

ECE 220 - Fall 2024

ILLINOIS

Memory mapping

« How many bytes of memory
should one instance of . 1 o
s1.name
student take?
a s1.name([1]
struct student({
char name[80];
unsigned long UIN;
unsigned int year; s1.name[/8]
) float GPA; . s1.name[79]
123456 s1.UIN
struct student sl =
{“Garfield”, 123456, 6, 3.5} 6 s1.year
3.5 s1.gpa

80+8+4+4

ECE 220 - Fall 2024 ILLINOIS

Memory mapping

 What if we change the definition
to this one?

struct student({
char name[74];
unsigned long UIN;
unsigned int year;
float GPA;

}r

ECE 220 - Fall 2024 ILLINOIS

Memory mapping

 What if we change the definition

to this one?
8074+8+4+4="7

struct student({
char name[74];

unsigned long UIN; Let us check using
unsigned int year; sizeof function.
float GPA;

i
What happened?

ECE 220 - Fall 2024 ILLINOIS

Memory mapping

 What if we change the definition

to this one?
8074+8+4+4="7

struct student({
char name[74];

unsigned long UIN; Let us check using
unsigned int year; sizeof function.
float GPA;

i
What happened?

Compilers will often perform “padding” to align memory.

Use the sizeof operator to get accurate results!

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

UNIVERSITY OF

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.

* Memory typically has an access granularity.

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.

* Suppose we have 4 byte memory access granularity.

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00
x01
x02
x03
x04
x05
x06
x07

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00
x01
x02
x03
x04
x05
x06
x07

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00
x01
x02
x03
x04
x05
x06
x07

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00
x01
x02
x03
x04
x05
x06
x07

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00
x01
x02
x03
x04
x05
x06
x07

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00 Read high bytes

x01

x02 /
x03

x04

x05 \
x06

x07 Read low bytes

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00 Read high bytes

x01

x02 /
x03

x04

x05 \
x06

x07 Read low bytes

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00 Read high bytes

x01

x02 /
x03

x04

x05 \
x06

x07 Read low bytes

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00
x01

x01

x02
x02

x03
x03 /
x04
x05 \
x06

x07 Read low bytes

x00 Read high bytes

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00
x01

x01

x02
x02

x03
x03 /
x04
x05 \
x06

x07 Read low bytes

x00 Read high bytes

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00
x01

x01

x02
x02

x03
x03 /
x04
x05 \
x06

x07 Read low bytes

x00 Read high bytes

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00
x01

x01

x02
x02

x03
x03 /
x04
x05 \
x06

x07 Read low bytes

x00 Read high bytes

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00
x01

x01

x02
x02

x03
x03 /
x04 %04
x05 %05
x06 %06

x07 Read low bytes x07

x00 Read high bytes

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00
x01

x01

x02
x02

x03
x03 /
x04 %04
x05 %05
x06 %06

x07 Read low bytes x07

x00 Read high bytes

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00 x01
x01

x01

x02
x02

x03
x03 /
x04 %04
x05 %05
x06 %06

x07 Read low bytes x07

x00 Read high bytes

Shift 1
byte up
X
@)
(@)

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00
x01

x01 -
X02 X

x03
x03

X
o
—

x00 Read high bytes

X
o
N

o
F
5
=
=
w% x03

x04 x04 S
X05 %05 2 §
x06 x06 <'IE> 0
x07 Read low bytes x07 %

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00
x01

x01 -
X02 X

x03
x03

X
o
—

x00 Read high bytes

X
o
N

N

Combine

o
F
5
=
=
w% x03

x04 x04 S
X05 %05 2 §
x06 x06 <'IE> 0
x07 Read low bytes x07 %

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00 Read high bytes A o A
x01 = S xo02 |
x01 0 Ee o | \
X02 Xos 5z X
x03 X Combine

x04 x04 < |
x05 x05 2 §

x06 x06 ;,E, o

x07 Read low bytes x07 % x04

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00 Read high bytes x00 Q 9
x01 & = x02 |
x02 : - :
o x03 Combine
x04 x04 S |
X05 %05 2 §
x06 x06 <'IE> 0
x07 Read low bytes x07 %

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00
x01

x01 -
X02 X

x03
x03

X
o
—

x00 Read high bytes

X
o
N

N

Combine

o
F
5
=
=
w% x03

x04 x04 S
X05 %05 2 §
x06 x06 <'IE> 0
x07 Read low bytes x07 %

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00
x01

x01 -

X02 / §
x03

x03

x04 %04

x05 %05

x06 %06

x07 Read low bytes x07

X
o
—

x00 Read high bytes

X
o
N

N

Combine

o
F
5
=
=
w% x03

Shift 3
bytes down

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

x00 Read high bytes x00 o 9
x01 g o X02
x02 = “ % -XO3 o
02
03 x03 | Combine 203
x04 \ x04 c | x04
05 © 8
X x05 £ S
x06 x06 5 &
x07 Read low bytes x07 %

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.

* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01 Thus, operations will be
faster if memory is
aligned.

x00 Read high bytes x00 o x0T

x01 ~ 5 x02
x01 CE g \

x02 o > x03 x01
x03 x03 , Combine oo

| X

x04 x04 S x04
XO5 X05 g:) _g
x06 x06 5 &
xQ7 Read low bytes (o7 3

ECE 220 - Fall 2024 Advanced Topic ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

The typedef keyword

ECE 220 - Fall 2024

The typedef keyword

e Note how we declared a struct
variable:

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

The typedef keyword

e Note how we declared a struct
variable:

struct flightType plane;

ECE 220 - Fall 2024 ILLINOIS

The typedef keyword

e Note how we declared a struct
variable:

struct flightType plane;
struct student sl;

ECE 220 - Fall 2024 ILLINOIS

The typedef keyword

e Note how we declared a struct
variable:

struct flightType plane;
struct student sl;

* Annoying to keep having to say
struct xyz, struct abc -
more so in the context of function
calls

ECE 220 - Fall 2024 ILLINOIS

The typedef keyword

e Note how we declared a struct
variable:

struct flightType plane;
struct student sl;

* Annoying to keep having to say
struct xyz, struct abc -
more so in the context of function

calls

 C provides a mechanism to avoid
this verbosity.

ILLINOIS

ECE 220 - Fall 2024

The typedef keyword

e Note how we declared a struct

variable: typedef Strl.J.Ct flightType(
char flightCode[20];
struct flightType plane; unsigned int altitude;
struct student sl; float longitude;

float latitude;

. Annoying to keep having to say unsigned float alrSpeed;

} Flight;
struct xyz, struct abc -
more so in the context of function Flight f1 = {“AA 4324",
calls 33000,
87.6,
. . . 41.8,
* C provides a mechanism to avoid 700} »

this verbosity.

ECE 220 - Fall 2024 ILLINOIS

Pointers to structs

ECE 220 - Fall 2024

Pointers to structs

 One can define pointers
to structs the usual way.

Flight planes[100];
Flight *ptrl;
ptrl = &planes[10];
Flight *ptr2;
ptr2 = planes;

ECE 220 - Fall 2024 ILLINOIS

Pointers to structs

 One can define pointers

to structs the usual way.

Flight
Flight
ptrl =
Flight
ptr2 =

ECE 220 - Fall 2024

planes[100];
*ptrl;
&planes[10];
*ptrl;
planes;

e To access struct elements via
pointers you can

ILLINOIS

Pointers to structs

 One can define pointers * To access struct elements via
to structs the usual way. pointers you can

Flight planes[100]; Dereference and dot
Flight *ptrl;

ptrl = &planes[10];

Flight *ptr2;

ptr2 = planes;

ECE 220 - Fall 2024 ILLINOIS

Pointers to structs

 One can define pointers * To access struct elements via
to structs the usual way. pointers you can

Flight planes[100]; Dereference and dot
Flight *ptrl;
ptrl = &planes[10];
Flight *ptr2;
ptr2 = planes;

printf(“I am %f feet high”,

ECE 220 - Fall 2024 ILLINOIS

Pointers to structs

 One can define pointers * To access struct elements via
to structs the usual way. pointers you can

Flight planes[100]; Dereference and dot
Flight *ptrl;
ptrl = &planes[10];
Flight *ptr2;
ptr2 = planes;

printf(“I am %f feet high”,
(*ptrl).altitude);

ECE 220 - Fall 2024 ILLINOIS

Pointers to structs

 One can define pointers * To access struct elements via
to structs the usual way. pointers you can

Flight planes[100]; Dereference and dot
Flight *ptrl;
ptrl = &planes[10];
Flight *ptr2;
ptr2 = planes;

printf(“I am %f feet high”,
(*ptrl).altitude);

e Arrow

ECE 220 - Fall 2024 ILLINOIS

Pointers to structs

 One can define pointers * To access struct elements via
to structs the usual way. pointers you can

Flight planes[100]; Dereference and dot
Flight *ptrl;
ptrl = &planes[10];
Flight *ptr2;
ptr2 = planes;

printf(“I am %f feet high”,
(*ptrl).altitude);

e Arrow

printf(“I am %f feet high”,

ECE 220 - Fall 2024 ILLINOIS

Pointers to structs

 One can define pointers * To access struct elements via
to structs the usual way. pointers you can

Flight planes[100]; Dereference and dot
Flight *ptrl;
ptrl = &planes[10];
Flight *ptr2;
ptr2 = planes;

printf(“I am %f feet high”,
(*ptrl).altitude);

e Arrow

printf(“I am %f feet high”,
ptrl->altitude);

ECE 220 - Fall 2024 ILLINOIS

Pointers to structs

 One can define pointers * To access struct elements via
to structs the usual way. pointers you can

Flight planes[100]; Dereference and dot
Flight *ptrl;
ptrl = &planes[10];
Flight *ptr2;
ptr2 = planes;

printf(“I am %f feet high”,
(*ptrl).altitude);

e Arrow

Special syntax! < printf(“I am %f feet high”,
ptrl->altitude);

ECE 220 - Fall 2024 ILLINOIS

Passing structs as arguments

* One can write function definitions involving using structs in either
way:

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Passing structs as arguments

* One can write function definitions involving using structs in either
way:

void print student(struct student s){
printf("Student %s is associated with UIN: %lu\n", s.name, s.UIN);
printf("%s is in Year %d with GPA %f\n", s.name, s.year, s.GPA);

}

ECE 220 - Fall 2024 ILLINOIS

Passing structs as arguments

* One can write function definitions involving using structs in either
way:

void print student(struct student s){
printf("Student %s is associated with UIN: %lu\n", s.name, s.UIN);
printf("%s is in Year %d with GPA %f\n", s.name, s.year, s.GPA);

}

volid print flight(Flight f){
printf("Flight #%s is at altitude %u\n", f.flightCode, f.altitude);
printf("%s has speed %f\n", f.flightCode, f.airSpeed);

}

ECE 220 - Fall 2024 ILLINOIS

Passing structs as arguments

 We could also pass the struct via reference:

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Passing structs as arguments

 We could also pass the struct via reference:

void print flight loc(Flight *f){
printf("Flight #%s is at altitude %u\n", f->flightCode, f->altitude);
printf("%s has lattitude: %$f\n", f->flightCode, f->latitude);
printf("%s has longitude: %$f\n", f->flightCode, f->longitude);

}

ECE 220 - Fall 2024 ILLINOIS

Passing structs as arguments

 We could also pass the struct via reference:

void print flight loc(Flight *f){
printf("Flight #%s is at altitude %u\n", f->flightCode, f->altitude);
printf("%s has lattitude: %$f\n", f->flightCode, f->latitude);
printf("%s has longitude: %$f\n", f->flightCode, f->longitude);

}

 Which is cheaper in terms of memory/run-time stack?

ECE 220 - Fall 2024 ILLINOIS

Passing structs as arguments

 We could also pass the struct via reference:

void print flight loc(Flight *f){
printf("Flight #%s is at altitude %u\n", f->flightCode, f->altitude);
printf("%s has lattitude: %$f\n", f->flightCode, f->latitude);
printf("%s has longitude: %$f\n", f->flightCode, f->longitude);

}

 Which is cheaper in terms of memory/run-time stack?

 What if we had an array of structs?

ECE 220 - Fall 2024 ILLINOIS

Structs within structs

ECE 220 - Fall 2024

Structs within structs

* Nothing stops us from creating
a struct composed of structs.

Suppose we have:

struct geoloc/{
float lattitude;
float longitude;

}i

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Structs within structs

* Nothing stops us from creating * Then we can do:

a struct composed of structs. typedef struct flight{

char code[8];

Suppose we have: unSJ:.gned J:.nt arrival_{:ime;
unsigned i1nt depart time;
struct geoloc{ struct geoloc origin;
float lattitude; struct geoloc destination;
float longitude; } Flight;
i

ECE 220 - Fall 2024

ILLINOIS

Example: Airport management

ECE 220 - Fall 2024

Example: Airport management

* Writing a struct to a file:

ECE 220 - Fall 2024

Example: Airport management

* Writing a struct to a file:

fwrite(void *ptr, size, n memb, FILE *stream)

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Example: Airport management

* Writing a struct to a file:

fwrite(void *ptr, size, n memb, FILE *stream)

e ptr IS pointer to instance of the struct to write

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Example: Airport management

* Writing a struct to a file:

fwrite(void *ptr, size, n memb, FILE *stream)

e ptr IS pointer to instance of the struct to write

 size Is the size in bytes of each element to be written (use sizeof)

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Example: Airport management

* Writing a struct to a file:

fwrite(void *ptr, size, n memb, FILE *stream)

e ptr IS pointer to instance of the struct to write
 size Is the size in bytes of each element to be written (use sizeof)

* n memb IS the number of items to write, each with size of size
bytes

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Example: Airport management

* Writing a struct to a file:

fwrite(void *ptr, size, n memb, FILE *stream)

e ptr IS pointer to instance of the struct to write
 size Is the size in bytes of each element to be written (use sizeof)

* n memb IS the number of items to write, each with size of size
bytes

e stream is the pointer to FILE object in binary write mode.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Example: Airport management

* Writing a struct to a file:

fread(void *ptr, size, n memb, FILE *stream)

e ptr Is pointer to instance of the struct to hold data
 size Is the size in bytes of each element to be read (use sizeof)

 n memb IS the number of items to read, each with size of size
bytes

e stream is the pointer to FILE object in binary read mode.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Exercise

* In a C file, use a loop and have the struct geoloc{
_ i float lattitude;
user input three records of the Flight float longitude:
struct. }i
* Write this data to disk using fwrite. typedef struct flight{
char code[8];
_ unsigned int arrival time;
e |n another C file, read the data back to unsigned int depart time;
an array of Flight using fread. struct geoloc origin;
struct geoloc destination;
} Flight;

ECE 220 - Fall 2024 ILLINOIS

