
 ECE 220 - Fall 2024 Dr. Ivan Abraham

ECE 220
Lecture x000E - 10/15

Slides based on material originally by: Yuting Chen & Thomas Moon

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Recap
• Last week we discussed:

• Recursion

• Recursion & runtime stack

• C to LC3

• Recursion with
backtracking

• Some problems we
discussed:

• Recursive binary search

• Towers of Hanoi

• Exiting a maze

• N-queens problem

 2

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Today
• Discussion on memoization

• Deeper discussion on I/O in C

• I/O with peripherals (keyboard & console)

• I/O with files

• Exercises

 3

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Good recursion vs. bad recursion
• Consider the recursive Fibonacci function from last time.

 4

long long fib(long long n){

long long sum;

if (n == 0 || n == 1)

 return 1;

else {

sum = (fib(n-1) + fib(n-2));

return sum;  
}

}

• Let’s do an activity

• Convert this function to an
iterative version.

• Compare run times.

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Memoization

• Can we keep the recursive formulation but somehow not repeat
calculations/recursive calls?

• Key idea: Once we calculate a value, let us cache it for future use
in a lookup “table” (actually array).

 5 Advanced topic

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Some concepts
• Concept of a stream

• A sequence of bytes made available over time

• An abstraction made to deal with objects/data whose size cannot
be known beforehand & contents may not be all available

• Different from arrays:

• Arrays are finite in size, elements can be accessed in any order

• Streams are potentially infinite; we only have access to the data
seen till current time.

 6

Ever thought where
does the word

streaming come
from?

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Streams for I/O
• A text stream is for example:

• the sequence of ASCII characters printed to the monitor by a
single program

• the sequence of ASCII characters entered by the user during a
single program

• the sequence of ASCII characters in a single file

• We can only access the the characters in the order they are
provided

 7

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Streams for I/O: standard streams

• C has three standard streams available: stdin, stdout, stderr.

• stdin maps from the keyboard to the program via the input
buffer.

• stdout and stderr maps from the program to the console via
the output buffer.

• Buffer: an implementation of the queue abstract datatype to
decouple the producer from the consumer - FIFO data structure.

 8

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Buffers
• Why queue/buffer?

• Correcting input

• Collecting output

• Streaming videos

• Flushing or releasing a buffer
causes its contents to be
released into its respective
stream.

 9

• Input buffer is released when
the user presses the enter or
return key (↵).

• Output buffer is released when
the program submits a newline
character “\n”.

Yes buffering too!

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Example

char in1, in2, in3;
in1 = getchar();
in2 = getchar();
in3 = getchar();
printf("result:\n");
printf("%c", in1);
printf("%c", in2);
printf("%c", in3);

 10

• What is the input for?

• ABCD↵

• getchar() reads one ASCII
character from the keyboard.

• Equivalent to the IN TRAP
routine in LC3.

What if you type in: A↵, B↵, C↵?

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Example

int main(){
putchar('a');
sleep(5);
putchar('b');
putchar('\n');

}

 11

• What is the expected
output for the following
snippet of code?

• putchar() displays one ASCII
character the console.

• Equivalent to the OUT TRAP
routine in LC3.

int main(){
putchar('a');
sleep(5);
putchar('b');
putchar('\n');

}

• What about?

 ECE 220 - Fall 2024 Dr. Ivan Abraham

stdout vs. stderr ?
• Normal program output is

conventionally directed to
stdout while warnings and
errors are directed to
stderr

• On *nix systems we can
separate the output of the
program using redirection.

 12

fprintf(stdout, "Normal output1\n");
fprintf(stdout, "Normal output2\n");
fprintf(stderr, "Error1 \n");
fprintf(stdout, "Normal output3\n");
fprintf(stderr, "Warning1\n");

Program text

./a.out >a.log 2>err.log

Invocation

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Typical I/O functions
• getchar: Reads an ASCII

character from the keyboard

• putchar: Writes an ASCII
character to the monitor

• fgetc: Reads an ASCII
character from stream

• fputc: Writes an ASCII
character to stream

• fgets: Reads a string (line)
from stream

• fputs: Writes a string (line) to
stream

• fscanf: Read formatted
string (line) from stream

• fprintf: Write formatted
string (line) to stream

 13

 ECE 220 - Fall 2024 Dr. Ivan Abraham

File based I/O
• To read or write to files in C we open and close file streams using

the functions fopen and fclose.

• A file is a sequence of ASCII characters (or binary) stored in some
storage device.

• To read or write a file, we declare a FILE pointer

• FILE is a standard type defined in the stdio.h

FILE *infile;
infile = fopen(“myfile.txt”, “w”)

 14

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Opening files
FILE* fopen(char* filename, char* mode)

mode is one of “r” (read), “w” (write) or “a” (append).

fopen returns a NULL pointer (failed to open file) or a pointer to the
file stream.

filename is a string that is a valid filename on the operating
system.

 15

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Reading & writing files
• To read/write to files one must:

• Open the file in the correct
mode - fopen

• Do writing/reading (e.g:
fputs, fgets, etc.)

• Close the file - fclose

 16

int fclose(FILE *stream);

Returns 0 (success) or EOF (failure)

EOF is a macro standing for
End-Of-File… commonly

represented as -1.

int feof(FILE *stream)

Will return nonzero value if
reached end of a file stream.

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Exercise
• Here is the syntax for fputc and fgetc. Using these write a

program that takes a file lower.txt and converts its contents to
uppercase in upper.txt.

int fgetc(FILE* stream)
int fputc(int character, FILE* stream)

Note: Both indicate success (character read/written) or failure (EOF)
in their return values.

 17 See gitlab for answers

 ECE 220 - Fall 2024 Dr. Ivan Abraham

I/O one line at a time
char* fgets(char* string, int num, FILE* stream)

• Parameters

• string: Pointer to a destination array

• num: Max # of char to be copied into string

• stream: Input stream

• Return value: NULL (failure) or pointer to string (success).

 18

 ECE 220 - Fall 2024 Dr. Ivan Abraham

I/O one line at a time

 19

int fputs(const char* string, FILE* stream)

• Parameters

• string: Pointer to a source array

• stream: Output stream

• Return value: Success (non-negative value) or failure (EOF).

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Exercise

• Write a function that will prompt the user for a name and a
description number of times.

• The name will be a maximum of 20 chars long

• The description will be a maximum of 100 chars long

• Write out each name and description to a file (one after the other).

N

 20 See gitlab for answers

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Formatted I/O
int fprintf(FILE* stream, const char* format, …)

• Parameters:

• stream: Output stream

• format: String that specifies the formatting details

• Additional arguments: variables to replace a format specifiers

• Return value: Success (number of characters written), Failure
(negative number)

 21

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Formatted I/O

 22

int fscanf(FILE* stream, const char* format, …)

• Parameters:

• stream: Input stream

• format: String that specifies the formatting details

• Additional arguments: pointers to store data that is read in

• Return value: Success (number of items read), Failure (EOF).

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Variable argument lists
• Note that fprintf and fscanf accepted a variable number of

arguments (depending on format specifier).

• How does this work on the run time stack?

• Recall arguments are pushed right-to-left.

• Last argument pushed will always be format specifier

• Sufficient to examine format specifier to know number of
parameters.

 23

If you wondered
why … well now

you know!

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Dynamic memory allocation

• In the exercise prompting the user for a name and description we
had to set the size of the array at compile time.

• Can we make the decision on the size of the data (i.e. memory it is
going to occupy) dynamically at run-time?

• This lead to two important functions: malloc and free

 24

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Dynamic memory allocation

void *malloc(size_t size)

• Parameters

• size: Number of bytes to allocate

• size_t: A type defined in the user library ~ unsigned integer

• Return value: NULL (failure) or pointer to beginning of allocated
block (success).

 25
https://en.cppreference.com/w/c/memory/malloc

http://en.cppreference.com/w/c/types/size_t
https://en.cppreference.com/w/c/memory/malloc

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Dynamic memory allocation

void free(void *ptr)

• Parameters

• *ptr: Pointer to beginning of block to be deallocated.

• Return value: void

• Memory allocated via malloc must be deallocated via free or
reallocated via realloc to prevent memory leaks!

 26
https://en.cppreference.com/w/c/memory/free https://en.cppreference.com/w/c/memory/realloc

https://en.cppreference.com/w/c/memory/free
https://en.cppreference.com/w/c/memory/realloc

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Exercise

• Write a function that will prompt the user for a name and a
description number of times.

• The name will be a maximum of 20 chars long

• The description will be a maximum of 100 chars long

• Write out each name and description to a file (one after the other).

N

 27 See gitlab for answers

Can we do this using dynamic memory allocation?

Yes - will be topic for next week.

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Next time

• Structures (combining data types a.k.a structs)

• Time permitting: more on dynamically allocating memory

• malloc()

• free()

 28

