ECE 220

Lecture xO00E - 10/15

Slides based on material originally by: Yuting Chen & Thomas Moon

ECE 220 - Fall 2024 ILLINOIS

Recap

e Last week we discussed: Some problems we
discussed:
 Recursion
* Recursive binary search
 Recursion & runtime stack
e Towers of Hanoi

e CtoLC3
 EXiting a maze
* Recursion with
backtracking N-queens problem

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Today

* Discussion on memoization
 Deeper discussion on I/O in C
* |/O with peripherals (keyboard & console)

* |/O with files

e EXxercises

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Good recursion vs. bad recursion

e Consider the recursive Fibonacci function from last time.

long long fib(long long n){
long long sum;

* Let’s do an activity
if (n == 0 || n == 1)

return 1; e Convert this function to an

else { iterative version.
sum = (fib(n-1) + fib(n-2));

return sum;

\ Compare run times.

ECE 220 - Fall 2024 ILLINOIS

Memoization

 Can we keep the recursive formulation but somehow not repeat
calculations/recursive calls?

o Key idea: Once we calculate a value, let us cache it for future use
in a lookup “table” (actually array).

ECE 220 - Fall 2024 Advanced topic ILLINOIS

Some concepts

 Concept of a stream Ever thought where
does the word

: : streaming come
* A sequence of bytes made available over time from?

* An abstraction made to deal with objects/data whose size cannot
be known beforehand & contents may not be all available

* Different from arrays:
* Arrays are finite in size, elements can be accessed in any order

» Streams are potentially infinite; we only have access to the data
seen till current time.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Streams for I/0

e A text stream is for example:

* the sequence of ASCI| characters printed to the monitor by a
single program

* the sequence of ASCI| characters entered by the user during a
single program

* the sequence of ASCII characters in a single file

* We can only access the the characters in the order they are
provided

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Streams for I/0: standard streams

 C has three standard streams available: stdin, stdout, stderr.

 stdin maps from the keyboard to the program via the input
buftfer.

e stdout and stderr maps from the program to the console via
the output buffer.

 Buffer: an implementation of the queue abstract datatype to
decouple the producer from the consumer - FIFO data structure.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Buffers

Yes buffering too!

. Why queue/buffer? * Input buffer is released when
| the user presses the enter or

* Correcting input return key (<).
* Collecting output |
 Qutput buffer is released when

the program submits a newline
character “\n”.

o Streaming videos

* Flushing or releasing a buffer
causes its contents to be

released into its respective tal heac |
stream. 15 4|3 | 2

enqueue

ECE 220 - Fall 2024

ILLINOIS

A

Example

 What is the input for? e getchar () reads one ASCI!
character from the keyboard.

« ABCD+
 Equivalent to the IN TRAP

routine in LC3.

char inl, in2, 1n3;

inl = getchar();
in2 = getchar();
in3 = getchar();

printf(‘result:\nt); What if you type in: A<, B, C+'?

printf("%c", 1inl);
printf("%c", 1in2);
printf("%c", 1in3);

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Example

 What is the expected e putchar () displays one ASCI|
output for the following character the console.
snippet of code?

* Equivalent to the OUT TRAP

int main(){ routine in LC3.
putchar('a');
sleep(5);
putchar('b');
putchar('\n'); \What about?
}

int main(){
putchar('a’);
sleep(5);
putchar('b');
}

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

stdout VS. stderr ?

 Normal program output is 5
_ _ rogram text
Conventlonglly dlrec?ted to fprintf(stdout, "Normal outputl\n");
stdout while warnings and fprintf(stdout, "Normal output2\n");

errors are directed to fprintf(stderr, "Errorl \n");
fprintf(stdout, "Normal output3\n");

stderr fprintf(stderr, "Warningl\n");
* On *nix systems we can Invocation
separate the output of the ./a.out >a.log 2>err.log

program using redirection.

ECE 220 - Fall 2024 ILLINOIS

Typical I/0 functions

e getchar: Reads an ASCII « fgets: Reads a string (line)
character from the keyboard from stream

e putchar: Writes an ASCI| fputs: Writes a string (line) to
character to the monitor stream

e fgetc: Reads an ASCII e fscanf: Read formatted
character from stream string (line) from stream

o fputc: Writes an ASCII o« fprintf: Write formatted
character to stream string (line) to stream

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

File based I/0

* To read or write to files in C we open and close file streams using
the functions fopen and fclose.

* A file is a sequence of ASCII| characters (or binary) stored in some
storage device.

 To read or write a file, we declare a FILE pointer

e FILE Is a standard type defined in the stdio.h

FILE *infile;
infile = fopen(“myfile.txt”, “w”)

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Opening files

FILE* fopen(char* filename, char* mode)

mode is one of “r” (read), “w” (write) or “a” (append).

fopen returns a NULL pointer (failed to open file) or a pointer to the
file stream.

filename IS a string that is a valid filename on the operating
system.

ECE 220 - Fall 2024 ILLINOIS

Reading & writing files

e To read/write to files one must: int fclose(FILE *stream);

- Returns 0O (success) or EOF (failure)
* Open the file in the correct

mode - fopen EOF is a macro standing for
End-Of-File... commonly
* Do writing/reading (e.q: represented as -1.

fputs, fgets, etc.)

int feof(FILE *stream)
e Close the file - fclose

Will return nonzero value if
reached end of a file stream.

ECE 220 - Fa" 2024 UNIVERSITY OF

ILLINOIS

Exercise

 Here is the syntax for fputc and fgetc. Using these write a
program that takes a file lower . txt and converts its contents to
uppercase in upper.txt.

int fgetc(FILE* stream)
int fputc(int character, FILE* stream)

Note: Both indicate success (character read/written) or failure (EOF)
IN thelr return values.

UNIVERSITY OF

ECE 220 - Fall 2024 See gitlab for answers ILLI !419,',65"

/0 one line at a time

char* fgets(char* string, int num, FILE* stream)

e Parameters

 string: Pointer to a destination array

 num. Max # of char to be copied into string

e stream: Input stream

 Return value: NULL (failure) or pointer to string (success).

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

/0 one line at a time

int fputs(const char* string, FILE* stream)
 Parameters
e string: Pointer to a source array
e stream: Output stream

* Return value: Success (non-negative value) or failure (EOF).

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Exercise

* Write a function that will prompt the user for a name and a
description N number of times.

 The name will be a maximum of 20 chars long
 The description will be a maximum of 100 chars long

* Write out each name and description to a file (one after the other).

UNIVERSITY OF

ECE 220 - Fall 2024 See gitlab for answers ILLINOIS

Formatted 1/0

int fprintf(FILE* stream, const char* format, ..)

 Parameters:
 stream: Output stream
 format: String that specifies the formatting details

* Additional arguments: variables to replace a format specifiers

 Return value: Success (humber of characters written), Failure
(hegative number)

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Formatted 1/0

int fscanf(FILE* stream, const char* format, ..)

 Parameters:
e stream: Input stream
 format: String that specifies the formatting details

* Additional arguments: pointers to store data that is read in

* Return value: Success (humber of items read), Failure (EOF).

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Variable argument lists

 Note that fprintf and fscanf accepted a variable number of
arguments (depending on format specifier).

If you wondered

you know!

« How does this work on the run time stack?/ S o iRl e

* Recall arguments are pushed right-to-/eft.
* Last argument pushed will always be format specifier

o Sufficient to examine format specifier to know number of
parameters.

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

Dynamic memory allocation

* |n the exercise prompting the user for a name and description we
had to set the size of the array at compile time.

 Can we make the decision on the size of the data (i.e. memory it is
going to occupy) dynamically at run-time?

 This lead to two important functions: malloc and free

ECE 220 - Fall 2024 ILLINOIS

Dynamic memory allocation

volid *malloc(size t size)

e Parameters
 size: Number of bytes to allocate

e size t: Atype defined in the user library ~ unsigned integer

 Return value: NULL (failure) or pointer to beginning of allocated
block (success).

https://en.cppreference.com/w/c/memory/malloc

UNIVERSITY Q=

ECE 220 - Fall 2024 ILLINOIS

http://en.cppreference.com/w/c/types/size_t
https://en.cppreference.com/w/c/memory/malloc

Dynamic memory allocation

volid free(void *ptr)

e Parameters

 *ptr: Pointer to beginning of block to be deallocated.
 Return value: void

* Memory allocated via malloc must be deallocated via free or
reallocated via realloc to prevent memory leaks!

https://en.cppreference.com/w/c/memory/free https://en.cppreference.com/w/c/memory/realloc

ECE 220 - Fall 2024 ILLINOIS

https://en.cppreference.com/w/c/memory/free
https://en.cppreference.com/w/c/memory/realloc

Can we do this using dynamic memory allocation?

Exercise

* Write a function that will prompt the user for a name and a
description N number of times.

 The name will be a maximum of 20 chars long
 The description will be a maximum of 100 chars long

* Write out each name and description to a file (one after the other).

Yes - will be topic for next week.

ECE 220 - Fall 2024 See gitlab for answers ILLINOIS

Next time

e Structures (combining data types a.k.a structs)
* Time permitting: more on dynamically allocating memory
* malloc()

e free()

UNIVERSITY OF

ECE 220 - Fall 2024 ILLINOIS

