ECE 220

Lecture x0009 - 09/24

Slides based on material originally by: Yuting Chen & Thomas Moon

ECE 220 - Fall 2024 ILLINOIS

Reminders

* No lecture on Thursday e Format
e Midterm 1 at 1900 hrs CT e Four questions in total
Instead

_ * Two larger writing LC3
e Check the course website for

room assignments » One debugging LC3

* Material: * Conceptual questions

e |Lectures 1 - 6 + textbook (including C)

* https://hkn.illinois.edu/services

ECE 220 - Fall 2024 ILLINOIS

https://hkn.illinois.edu/services

Recap

 Functionsin C L C3 implementation
o Similarity to subroutines e RO - R3 caller saved
* Prototype vs. definition e R4 - global variable
» Parameters & return types e R5 - stack frame
* Low-level implementation * R6 - top of stack
* Run time stack e R7 - for RET instruction

OF

ECE 220 - Fall 2024 ILLINOIS

Swap function

e Did this function from last time
void Swap(int first, int second); W()rk?

int main(){

int valueA = 3; What needed to be changed for
int valueB = 4; .
Swap (valuehA, valueB); the swap function to work?

}

void Swap(int first, int second){ e Somehow the swap function
int temp;
femp = first: needg to know the memory
first = second; locations of the variables that
second = temp; .

\ main needs swapped

* Enter pointers.

ECE 220 - Fall 2024 ILLINOIS

Pointers in C

A pointer in C, is a variable whose value is the address of another
variable, I.e., direct address of the memory location.

« Memory location utilized by a variable is obtained using the
address-of operator &. For example:

&sval — address operator: returns address of variable val

 The declaration syntax for a pointer is:

type *ptr-name;

OF

ECE 220 - Fall 2024 ILLINOIS

Pointers in C

Example declarations

int *ptr; // ptr is a pointer to an int

char *cptr; // cptr is a pointer to

double *dptr; // dptr is a pointer to

ECE 220 - Fall 2024

Types of pointers

« Standard pointer: A pointer with a * Dangling pointer: A standard
well defined C type and referring pointer which points to a memory
to a well defined memory location location that was deallocated
(more in later lectures).

* Wild pointer: An uninitialized
pointer, I.e. it points to some Be careful with them.
garbage memory address. Be
careful with them.

* \Void pointer: A pointer that has no
data type associated with it. Why?

* Null pointer: A standard pointer to
the NULL value/location. T
T Usefulness well become clear in
v later lectures.

Needs. #include <stddef.h>

OF

ECE 220 - Fall 2024 ILLINOIS

Using pointers in C

#include <stdio.h>

temp
void Swap(int *first, int *second)
— int temp;
swap temp = *first;
| *first = *second;
XEFFA | first *second = temp;
B XEFF9 : second }
vaILJB XEFF9
valeA E xEFFA — int main()
main int valueA = 3;
int valueB = 4;

a Swap (&valueA, &valueB);

ECE 220 - Fall 2024

ILLINOIS

Using pointers in C

Question: What are the missing items
temp on the run time stack?

swap
XEFFA first
xEFF9 ~ [|secon d
|L_B XEFF9
~ valyeA XEFFA
main

OF

ECE 220 - Fall 2024 ILLINOIS

Using pointers in C

#include <stdio.h>
B temp
void Swap(int *first, int *second)
int temp;
swap temp = *first;
—— *first = *second;
xEFFA — | first
*second = temp;
XEFF9 . second }
:—‘
valyeB D_ XEFF9
valueA C] m Compare int maln(){
main — int valueA = 3;
int valueB = 4;
- Swap (&valueA, &valueB);
}

ECE 220 - Fall 2024

ILLINOIS

Using pointers in C

* Pointers need to be indicated
when making parameter

#include <stdio.h>

declarations. \if;i:dtzxg]?(int "*first, int *‘.'second){
temp = *%irst;
* How did we use the value at *first = *second;
memory location which "second = temp;

. . L h
pointer is pointing to?
int main(){

int valueA = 3;

4

int valueB = 4:

*ptr — dereference

operator: returns the value Swap (&valueA, &valueB);
pointed to by ptr ;

ECE 220 - Fall 2024

ILLINOIS

Using pointers in C

 Which uses of * are dereferencing

(not declarations) ? #include <stdio.h>

volid Swap(int 9first, int ?second){
int temp;
temp = *first;E)
O+first = *second; ©
() +second = temp;
}

int main(){
int valueA = 3;
int valueB = 4;
Swap(&valueA, &valueB);

}

ECE 220 - Fall 2024 ILLINOIS

Asides: ... pointers only point to variables?

* No.
#include <stdio.h>
* They can point to functions, void fun(int a){
structs, other pointers, etc. printf("value of a is %d\n", a);
}
. Exgmple on left slhows a int main(void){
pointer to a function. void (*fun ptr)(int) = &fun;
(*fun ptr)(10);
 We will learn about them on a
need-to-know basis (definitely
about pointers to structs).

return O0;

OF

ECE 220 - Fall 2024 ILLINOIS

Using pointers in C

Usage summary:

& — &val — address operator: returns address of variable val

* — *ptr — dereference operator: returns the value pointed

to by ptr

int x
| x1234 10
int x = 10; - o
int *p; i

P = &X; X5678 x1234

ECE 220 - Fall 2024

More pointers in C

/* Guess the outputs 1%/

printf(“x3X\n”, &x);
printf (“x%X\n”, p);
printf(“x3X\n”, &p);
printf(“%d\n”, *p);

*p: *p-|-]_O;

printf (“%d\n”, *p);
printf (“%d\n”, X);

ECE 220 - Fall 2024 ILLINOIS

Even more pointers in C
int x 10; x1234

int *p = &X; int *p

int **pp = &pj;
x5678 x1234
int **pp
/* Guess the outputs 2 */

printf (“x%X\n”, &pp):;
printf(“x%X\n"”, pp);

printf (“x%X\n"”, *pp);
printf(“%d\n”, **pp);

XABCD

ECE 220 - Fall 2024 ILLINOIS

Pointers in LC-3

int object; R5

int *ptr; xEFFO

ObjeCt = 4; XEFF1 xXEFF2 ptr

ptr = &object; . XEFF2 object
XEFF3
XEFF4

AND RO, RO, #0 + Clear RO xEFE5

ADD RO, RO, #4 : RO = 4

STR RO, R5, #O0 ; object = 4

ADD RO, R5, #0 ; Generate memory address of object
STR RO, R5, #-1 ; ptr = &object

ECE 220 - Fall 2024 ILLINOIS

Pointers in LC-3

*ptr = *ptr + 1; R5
RO XEFFO
XEFF2
xEFF1 XEFF2 ptr
R1 —» XEFF2 object
S
XEFF3
XEFF4
LDR RO, R5, #-1 ; RO contains the value of ptr YEFF5
LDR R1, RO, #O ; Rl = *ptr
ADD R1, R1, #1 ; *ptr + 1 Why not?
STR R1, RO, #O0 s *ptr = *ptr +1 < STR R1, R5, #0

ECE 220 - Fall 2024 ILLINOIS

Arrays

* A list of values arranged sequentially in memory
« Example: a list of telephone numbers

* Declaration syntax:

type arrayName[arraySize];
e arraySize has to be positive, nonzero and integer values

e type is any valid C type

OF

ECE 220 - Fall 2024 ILLINOIS

Arrays

* Initializing arrays
double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};

balance[4] 50.0;
* Accessing elements?

 Expression a[4] refers to the 5th element of the array a
(index starts from 0)

lllllllllll Y OF

ECE 220 - Fall 2024 ILLINOIS

Arrays

« How do we calculate the length of an array? sizeof function

#include <stdio.h> Gives memory Gives memory
occupied by all of occupied by
int main() { arr arr[0]

//simple array

int arr[] = {19, 25, 8, 22, 17,/7, 84, 9, 19, 245, 10, 3, 1,
7, 84, 9, 19, 28, 10, 3, 1, 8,/ 22, 17, 19, 25,
10, 3, 1, 8, /22, 17, 7, 84, 9, 33, 1, 8, 22,
17, 7, 84, 9,/ 19, 25, 10, 22,/17, 7, 84, 9, 19,
25, 10, 3, X, 8, 84, 9, 11X, 23, 45, 5, 3}:

// using sizeof() operator to get leng of array
int len = |sizeof(arr)| / pizeof(arr[0])}

printf("The length of int array 1s : %d ", len);
}

ECE 220 - Fall 2024 ILLINOIS

Exercise

Using loops, write a C program that prompts the user for five
integers one by one and stores them into an array arr. Then print
out the five integers in a single line but in reverse order.

UNIVERSIT Y OF

ECE 220 - Fall 2024 ILLINOIS

Exercise

Add a function int my first sum to the previous program which
will take the list of five numbers and return their sum. Use this
function to display the sum to the console instead of the numbers in
reverse order.

OF

ECE 220 - Fall 2024 ILLINOIS

Passing arrays

« How did we let the .
. « How did we pass the
compiler know
. parameter arr to the
my first sumtakes an . .
— — functionmy first sum?

array of integers?

int my first sum(int |array[])){ printf("Sum is: %d \n", my sum(arr));

int 1, sum=0;
for (1=0; 1<5; 1i++)

sum = sum + array[i];
return sum;

}
Fact: The name of the array is pointer to the array!

OF

ILLINOIS

ECE 220 - Fall 2024

Not convinced?

 The parameter declaration
int array|[] in the function

definition is syntactic sugar
for int *array.

 Replace the previous
function with this one instead

and try it out!

int my second sum(int *array) {

int i, sum=0; e However, int p[] makes it
tor (1707 1<3; i++) clear we are passing an array
sum = sum + array|[l]; _ _)
return sum: of integers while int *p ...
} not so much.

This is called pointer/array duality in C.

OF

ILLINOIS

ECE 220 - Fall 2024

Pointer/array duality

* |Infact arr[3] is syntactic e S0 Is there a difference
sugar for * (arr + 3) !l between cptr and arr in
the below?

int my third sum(int *arr) {
int i, sum=0;
for (1=0; 1<5; 1i++)

char arr[10];
char *cptr;

sum = sum -+ *(arr + l); Cptr = arxr,
return sum; |
} * Try doing:
cptr = cptr + 1;
' : arr = arr + 1;
would also work just fine!
What gives?

ECE 220 - Fall 2024 ILLINOIS

Some tips for the debugging MP

* Pointer arithmetic implicitly uses size of each data type.

* |f an integer pointer that stores address x1000 is incremented, then
it will increment by 4 (size of an int), and the new address will point

to x1004.

e |f ptris an integer pointer that stores x1000 as an address. If we
add integer 5 to it using the expression ptr = ptr + 5, then, the final
address stored in the ptr will be x1000 + sizeof(int) * 5.

* The addition and subtraction of pointers are only possible if they are of
the same type.

OF

ECE 220 - Fall 2024 ILLINOIS

Next time

* More pointer/array duality

e Arrays in LC3 GOOd |UCk
 Variable length arrays on the exam!
e Strings

 Multi-dimensional arrays

OF

ECE 220 - Fall 2024 ILLINOIS

