
 ECE 220 - Fall 2024 Dr. Ivan Abraham

ECE 220
Lecture x0009 - 09/24

Slides based on material originally by: Yuting Chen & Thomas Moon

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Reminders
• No lecture on Thursday

• Midterm 1 at 1900 hrs CT
instead

• Check the course website for
room assignments

• Material:

• Lectures 1 - 6 + textbook

• https://hkn.illinois.edu/services

• Format

• Four questions in total

• Two larger writing LC3

• One debugging LC3

• Conceptual questions
(including C)

 2

https://hkn.illinois.edu/services

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Recap
• Functions in C

• Similarity to subroutines

• Prototype vs. definition

• Parameters & return types

• Low-level implementation

• Run time stack

• LC3 implementation

• R0 - R3 caller saved

• R4 - global variable

• R5 - stack frame

• R6 - top of stack

• R7 - for RET instruction

 3

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Swap function

 4

void Swap(int first, int second);

int main(){
int valueA = 3;
int valueB = 4;
Swap(valueA, valueB);

}

void Swap(int first, int second){
int temp;
temp = first;
first = second;
second = temp;

}

• Did this function from last time
work?

• What needed to be changed for
the swap function to work?

• Somehow the swap function
needs to know the memory
locations of the variables that
main needs swapped

• Enter pointers.

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Pointers in C
• A pointer in C, is a variable whose value is the address of another

variable, i.e., direct address of the memory location.

• Memory location utilized by a variable is obtained using the
address-of operator &. For example:

&val → address operator: returns address of variable val

• The declaration syntax for a pointer is:

type *ptr-name;

 5

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Pointers in C
Example declarations

int *ptr; // ptr is a pointer to an int

char *cptr; // cptr is a pointer to __________

double *dptr; // dptr is a pointer to __________

 6

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Types of pointers
• Standard pointer: A pointer with a

well defined C type and referring
to a well defined memory location

• Wild pointer: An uninitialized
pointer, i.e. it points to some
garbage memory address. Be
careful with them.

• Null pointer: A standard pointer to
the NULL value/location.

• Dangling pointer: A standard
pointer which points to a memory
location that was deallocated
(more in later lectures).

Be careful with them.

• Void pointer: A pointer that has no
data type associated with it. Why?

Usefulness well become clear in
later lectures.

 7

Needs. #include <stddef.h>

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Using pointers in C

 8

#include <stdio.h>

void Swap(int *first, int *second){
int temp;
temp = *first;
*first = *second;
*second = temp;
}

int main(){
 int valueA = 3;
 int valueB = 4;
 Swap(&valueA, &valueB);
}

main

swap

3valueA xEFFA

4valueB xEFF9

xEFF9

xEFFA

second

first

temp3

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Using pointers in C

 9

main

swap

3valueA xEFFA

4valueB xEFF9

xEFF9

xEFFA

second

first

temp3

Question: What are the missing items
on the run time stack?

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Using pointers in C

 10

#include <stdio.h>

void Swap(int *first, int *second){
int temp;
temp = *first;
*first = *second;
*second = temp;
}

int main(){
 int valueA = 3;
 int valueB = 4;
 Swap(&valueA, &valueB);
}

main

swap

3valueA xEFFA

4valueB xEFF9

xEFF9

xEFFA

second

first

temp3

4

3

Compare

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Using pointers in C
• Pointers need to be indicated

when making parameter
declarations.

• How did we use the value at
memory location which
pointer is pointing to?

*ptr → dereference
operator: returns the value

pointed to by ptr

 11

#include <stdio.h>

void Swap(int *first, int *second){
int temp;
temp = *first;
*first = *second;
*second = temp;
}

int main(){
 int valueA = 3;
 int valueB = 4;
 Swap(&valueA, &valueB);
}

 ECE 220 - Fall 2024 Dr. Ivan Abraham

#include <stdio.h>

void Swap(int *first, int *second){
int temp;
temp = *first;
*first = *second;
*second = temp;
}

int main(){
 int valueA = 3;
 int valueB = 4;
 Swap(&valueA, &valueB);
}

Using pointers in C
• Which uses of * are dereferencing

(not declarations) ?

 12

4 5

6

3

21

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Asides: … pointers only point to variables?

• No.

• They can point to functions,
structs, other pointers, etc.

• Example on left shows a
pointer to a function.

• We will learn about them on a
need-to-know basis (definitely
about pointers to structs).

 13

#include <stdio.h>

void fun(int a){

printf("Value of a is %d\n", a);
}

int main(void){

void (*fun_ptr)(int) = &fun;
(*fun_ptr)(10);

return 0;

}

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Using pointers in C
Usage summary:

& → &val → address operator: returns address of variable val

* → *ptr → dereference operator: returns the value pointed
to by ptr

 14

int x = 10;
int *p;
p = &x;

int *p

x5678

int x

x1234 10

x1234

 ECE 220 - Fall 2024 Dr. Ivan Abraham

More pointers in C

 15

int x = 10;
int *p = &x;

/* Guess the outputs 1*/

printf(“x%X\n”, &x);
printf(“x%X\n”, p);
printf(“x%X\n”, &p);
printf(“%d\n”, *p);

*p = *p + 10;

printf(“%d\n”, *p);
printf(“%d\n”, x);

int *p

x5678

int x

x1234 10

x1234

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Even more pointers in C

 16

int x = 10;
int *p = &x;
int **pp = &p;

/* Guess the outputs 2 */

printf(“x%X\n”, &pp);
printf(“x%X\n”, pp);
printf(“x%X\n”, *pp);
printf(“%d\n”, **pp);

int *p

x5678

xABCD

int x

x1234 10

x1234

int **pp

x5678

 ECE 220 - Fall 2024 Dr. Ivan Abraham

xEFF0

xEFF1

xEFF2

xEFF3

xEFF4

xEFF5

Pointers in LC-3

 17

int object;
int *ptr;

object = 4;
ptr = &object; 4

R5

xEFF2

AND R0, R0, #0 ; Clear R0
ADD R0, R0, #4 ; R0 = 4
STR R0, R5, #0 ; object = 4

ADD R0, R5, #0 ; Generate memory address of object
STR R0, R5, #-1 ; ptr = &object

ptr

object

 ECE 220 - Fall 2024 Dr. Ivan Abraham

xEFF0

xEFF1

xEFF2

xEFF3

xEFF4

xEFF5

Pointers in LC-3

 18

*ptr = *ptr + 1;

4

R5R5

xEFF2

LDR R0, R5, #-1 ; R0 contains the value of ptr
LDR R1, R0, #0 ; R1 = *ptr

ADD R1, R1, #1 ; *ptr + 1
STR R1, R0, #0 ; *ptr = *ptr +1

ptr

object

R0
xEFF2

R1
45

5

Why not?

 STR R1, R5, #0

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Arrays
• A list of values arranged sequentially in memory

• Example: a list of telephone numbers

• Declaration syntax:

type arrayName[arraySize];

• arraySize has to be positive, nonzero and integer values

• type is any valid C type

 19

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Arrays
• Initializing arrays

double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};

balance[4] = 50.0;

• Accessing elements?

• Expression a[4] refers to the 5th element of the array a
(index starts from 0)

 20

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Arrays
• How do we calculate the length of an array?

 21

#include <stdio.h>

int main() {
 //simple array
 int arr[] = {19, 25, 8, 22, 17, 7, 84, 9, 19, 25, 10, 3, 1,
 7, 84, 9, 19, 25, 10, 3, 1, 8, 22, 17, 19, 25,
 10, 3, 1, 8, 22, 17, 7, 84, 9, 33, 1, 8, 22,
 17, 7, 84, 9, 19, 25, 10, 22, 17, 7, 84, 9, 19,
 25, 10, 3, 1, 8, 84, 9, 11, 23, 45, 5, 3};

 // using sizeof() operator to get length of array
 int len = sizeof(arr) / sizeof(arr[0]);

 printf("The length of int array is : %d ", len);
}

sizeof function

Gives memory
occupied by all of
arr

Gives memory
occupied by
arr[0]

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Exercise

Using loops, write a C program that prompts the user for five
integers one by one and stores them into an array arr. Then print

out the five integers in a single line but in reverse order.

 22

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Exercise

Add a function int my_first_sum to the previous program which
will take the list of five numbers and return their sum. Use this

function to display the sum to the console instead of the numbers in
reverse order.

 23

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Passing arrays
• How did we let the

compiler know
my_first_sum takes an
array of integers?

 24

int my_first_sum(int array[]){
 int i, sum=0;
 for (i=0; i<5; i++)
 sum = sum + array[i];
 return sum;
}

• How did we pass the
parameter arr to the
function my_first_sum ?

 printf("Sum is: %d \n", my_sum(arr));

Fact: The name of the array is pointer to the array!

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Not convinced?
• Replace the previous

function with this one instead
and try it out!

 25

int my_second_sum(int *array){
 int i, sum=0;
 for (i=0; i<5; i++)
 sum = sum + array[i];
 return sum;
}

• The parameter declaration
int array[] in the function
definition is syntactic sugar
for int *array.

• However, int p[] makes it
clear we are passing an array
of integers while int *p …
not so much.

This is called pointer/array duality in C.

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Pointer/array duality
• In fact arr[3] is syntactic

sugar for *(arr + 3) !!

 26

int my_third_sum(int *arr){
 int i, sum=0;
 for (i=0; i<5; i++)
 sum = sum + *(arr + i);
 return sum;
}

would also work just fine!

• So is there a difference
between cptr and arr in
the below?

char arr[10];
char *cptr;
cptr = arr;

cptr = cptr + 1;  
arr = arr + 1;

• Try doing:

What gives?

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Some tips for the debugging MP
• Pointer arithmetic implicitly uses size of each data type.

• If an integer pointer that stores address x1000 is incremented, then
it will increment by 4 (size of an int), and the new address will point
to x1004.

• If ptr is an integer pointer that stores x1000 as an address. If we
add integer 5 to it using the expression ptr = ptr + 5, then, the final
address stored in the ptr will be x1000 + sizeof(int) * 5.

• The addition and subtraction of pointers are only possible if they are of
the same type.

 27

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Next time

• More pointer/array duality

• Arrays in LC3

• Variable length arrays

• Strings

• Multi-dimensional arrays

 28

Good luck
on the exam!

