
 ECE 220 - Fall 2024 Dr. Ivan Abraham

ECE 220
Lecture x0005 - 09/10

Slides based on material originally by: Yuting Chen, Yih-Chun Hu & Thomas Moon

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Recap
• Last week:

• Stack ADT

• Push/Pop routines

• Uses for stack

• MP2 material - RPN
notation

2

• Reminders/upcoming

• Mock Quiz on-going

• Quiz 1 to be 09/16 - 09/18

• Midterm 1 on 09/26

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Postfix expressions

3

• Rewrite the following infix
expressions in RPN:

•

•

•

(8 + 4)2

7 + (9 − 6)/3

(5 + (1 + 2) × 4) − 3

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Introduction to C
programming

4

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Why do we need C?
• Type a response to the question

below (answer need not be full
sentences)

• What are three things you dislike
about LC3 programming?

• Unhelpful answer: All of it

• Helpful answers: Shuffling
registers, debugging, etc.

5

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Why do we need C?
• Type a response to the question

below (answer need not be full
sentences)

• What are three things you dislike
about LC3 programming?

• Unhelpful answer: All of it

• Helpful answers: Shuffling
registers, debugging, etc.

6

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Generations of languages
• First generation: machine code, i.e. 1’s and 0’s

• Second generation: assembly language, e.g. LC3, x86 ISA

• A little piece of history: https://github.com/chrislgarry/
Apollo-11/tree/master

• Third generation: offering higher-level abstractions, e.g. early: C,
FORTRAN, ALGOL and later: Java, Python, etc.

• Fourth generation: no consensus, tend to be highly domain
specific.

7

https://github.com/chrislgarry/Apollo-11/tree/master
https://github.com/chrislgarry/Apollo-11/tree/master

 ECE 220 - Fall 2024 Dr. Ivan Abraham

C – High Level Language
• Developed in the early 1970s by Dennis Ritchie at Bell Laboratories

• Gives symbolic names to values

• Don’t need to know which register or memory location

• Provides abstraction of underlying hardware

• Operations do not depend on instruction set

• E.g. We can write “a=b*c” in C language (in LC-3, there is no
single instruction that performs an integer multiplication).

• Do not need to deal with low level implementations

8

 ECE 220 - Fall 2024 Dr. Ivan Abraham

C – High Level Language
• Provides expressiveness

• Use meaningful symbols that convey meaning

• Simple expression for common control patterns (if-
then-else)

• Enhances code readability

• Safeguard against bugs

• Can enforce rules or conditions at compile-time or
run-time

9

if (isItCloudy)
get(Umbrella);

else
get(SunGlasses);

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Characteristics of C
• Imperative vs. declarative programming languages

• In the imperative programming paradigm, you describe the
algorithm step-by-step, at various degrees of abstraction. E.g.
C, Java, etc.

• In the declarative programming paradigm, you describe a result
or a goal, and you get it via a "black box". E.g. SQL, Prolog,
etc.

• C is an imperative procedural language

10

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Characteristics of C
• C programs are compiled rather that interpreted

• a compiler translates a C program into machine code that is
directly executable on hardware

• interpreted programs (e.g. MATLAB) are executed by another
program, called interpreter

• C programs are statically typed

• the type of each expression is checked at compile time for type  
inconsistencies (e.g., int x = 3.411;)?

11

Complement is dynamically
typed, e.g. Python or MATLAB

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Example

def silly(a):
 if a > 0:
 print(“Hi”)
 else:
 print(a + ‘3’)

>> silly(2)

>> silly(-1)

12

void silly(int a){
 if (a > 0)
 printf("Hi");
 else
 printf("%s", a + '3');
}

In Python you can
enter this function line
by line into the REPL
→ interpreted.

This C snippet must be
made into a complete
program (more on that
later) and then compiled
using an invocation of a
compiler like gcc. Interpreter

allows a to
be whatever.

Error only
raised if you
hit this line.

a restricted
to be an int.

Compiler knows
this shouldn’t be
permitted; will
not compile

Hi

ERROR!!

http://xahlee.info/comp/unicode_arrows.html

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Translating HLL programs

13

Interpreter Compiler
Program that executes instructions/

statements
Program translates statements into

machine language

Pros: Easy to debug, make changes,
view intermediate results

Pros: Executes faster, memory
efficient

Cons: Program takes longer to
execute

Cons: Harder to debug, change
requires recompilation

Languages: Python, Matlab Languages: C, C++, Fortran

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Translating HLL programs

14

Static typing Dynamic typing
Type of variables are known and/or

constrained
Type of variables are associated to

their runtime values

Pros: Bugs are caught earlier on,
compiler can perform optimizations

Pros: Rapid prototyping is easier,
more flexibility for programmer

Cons: Programs takes longer to type
and require forethought

Cons: Errors not caught until runtime,
typically slower

E.g languages: C, C++, Java E.g. languages: Python, MATLAB,
Ruby

 ECE 220 - Fall 2024 Dr. Ivan Abraham

A first look at C
/* This program is the standard Hello-World in C
 and these lines show case a ‘multiline’ comment.
*/

// The below is a preprocessor directive
#include <stdio.h>

// The main function is the entry point to the program
int main(void){

// printf() displays the string inside quotation
 printf("Hello, World!\n”);
 return 0;
}

15

Comments can
be multiline

or single line.

Main function
always returns an
int.

Statements always terminated with a ;Braces indicate scope

… always start
with #

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Compilation process
• Preprocessor

• Macro substitution by C preprocessor

directive (eg: #include, #define)

• Source level transformation: output is
still C code

• Compiler

• Generates object files

• Linker

• Combines object files into executable

images

16

Symbol
table

C
Source and Header

Files

C pre-processor

Compiler

Linker

Executable
Image

Library
Object Files

Source code
Analysis

Target code
Analysis

On EWS we use gcc!

 ECE 220 - Fall 2024 Dr. Ivan Abraham

From the textbook - Figure 11.3
// The next two lines are preprocessor directives
#include <stdio.h>
#define STOP 0

/* Function : main
 Description : prompt for input, then countdown
*/
int main(void){

// Variable declarations
int counter; // Holds intermediate count values
int startPoint; // Starting point for count down

// Prompt the user for input
printf("===== Countdown Program =====\n");
printf("Enter a positive integer: ");
scanf("%d", &startPoint);

// Count down from the input number to 0
for (counter = startPoint; counter >= STOP; counter--)

printf("%d\n", counter);
}

17

Before compilation copy content
of header files into source code.

• <…> header files are standard
and in a predefined directory

• “…” header files are in the same
directory as the source C file

Before compiling replace all
instances of the symbol STOP with
the value 0.

• Used for values that won’t
change during execution

 ECE 220 - Fall 2024 Dr. Ivan Abraham

// The next two lines are preprocessor directives
#include <stdio.h>
#define STOP 0

/* Function : main
 Description : prompt for input, then countdown
*/
int main(void){

// Variable declarations
int counter; // Holds intermediate count values
int startPoint; // Starting point for count down

// Prompt the user for input
printf("===== Countdown Program =====\n");
printf("Enter a positive integer: ");
scanf("%d", &startPoint);

// Count down from the input number to 0
for (counter = startPoint; counter >= STOP; counter--)

printf("%d\n", counter);
}

From the textbook - Figure 11.3

18

Every C program has a (and only one)
function called main that returns an
integer

• This is the code that is executed
when the program starts.

void indicates this main function
takes no arguments

• Advanced usage: pass in
command-line arguments.

int main(int argc, char *argv[])

• Exercise: In C, what is the
difference between int func()
and int func(void)?

 ECE 220 - Fall 2024 Dr. Ivan Abraham

// The next two lines are preprocessor directives
#include <stdio.h>
#define STOP 0

/* Function : main
 Description : prompt for input, then countdown
*/
int main(void){

// Variable declarations
int counter; // Holds intermediate count values
int startPoint; // Starting point for count down

// Prompt the user for input
printf("===== Countdown Program =====\n");
printf("Enter a positive integer: ");
scanf("%d", &startPoint);

// Count down from the input number to 0
for (counter = startPoint; counter >= STOP; counter--)

printf("%d\n", counter);
}

From the textbook - Figure 11.3

19

Variables are used as names for data
items. Each variable has:

• type which indicates to the compiler
how the data has to be interpreted
and/or stored

• identifier, i.e. the name of the variable
(case-sensitive, cannot begin with
number)

• scope, the portion of code in which
data held in memory is accessible via
its identifier

• storage class, the duration for which
the data is held in memory

 ECE 220 - Fall 2024 Dr. Ivan Abraham

// The next two lines are preprocessor directives
#include <stdio.h>
#define STOP 0

/* Function : main
 Description : prompt for input, then countdown
*/
int main(void){

// Variable declarations
int counter; // Holds intermediate count values
int startPoint; // Starting point for count down

// Prompt the user for input
printf("===== Countdown Program =====\n");
printf("Enter a positive integer: ");
scanf("%d", &startPoint);

// Count down from the input number to 0
for (counter = startPoint; counter >= STOP; counter--)

printf("%d\n", counter);
}

From the textbook - Figure 11.3

20

More on these I/O commands &
program flow topics next lecture.

Today:

• Using gcc to compile on EWS
machines

• Data types, scope/storage and
basic operations

 ECE 220 - Fall 2024 Dr. Ivan Abraham

EWS and gcc
• Typical workflow (recommended but not necessary):

• ssh (MacOS/*nix) or FastX (Windows) into EWS Machine

• Navigate to your project folder (use Linux commands like cd)

• Use a text editor (like vim, nano, etc. but recommend vim, try
running vimtutor to get started) to edit source files

• Invoke gcc with the appropriate flags (man gcc is your friend)

• Run/debug executable

• Let us run the previous program.

21

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Demo time: EWS, ssh, gcc,
manpages, linux commands,

etc.

22

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Basics of C programs

23

 ECE 220 - Fall 2024 Dr. Ivan Abraham

About variables: data types
• Integers: short, int, long

• Floating point: float, double

• char

• bool

24

Bits 1 8 16 32 64

Types Bool Char Short Int Long

Float Double

/* print different types*/

#include <stdio.h>
#define PI 3.1416

int main()
{
 int i = 3;
 float f = 3.14;
 char c = 'M';

 printf("value of i is %i\n", i);
 printf("value of f is %f\n", f);
 printf("value of c is %c\n", c);
 printf("value of PI is %f\n", PI);
 return 0;
}

Single quote for char!

Called format
specifiers; more
about them next
lecture.

• Flavors signed and unsigned

Four basic types

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Note about styling conventions

25

Adopt one and stick to it:
Course Website

More links:

GNU C Convention

https://courses.grainger.illinois.edu/ece220/fa2024/pages/resources/coding_conventions/
https://www.gnu.org/prep/standards/html_node/Writing-C.html

 ECE 220 - Fall 2024 Dr. Ivan Abraham

• Scope of a variable is
the duration or portion
of the code within
which the data it
represents in memory
is accessible via its
identifier

• Globally available
vs. locally scoped

26

About variables: scope
int itsGlobal = 0;

int main(){
/* local to main */
int itsLocal = 1;
printf("Global %d Local %d\n", itsGlobal, itsLocal);

{
/* local to this block */
int itsLocal = 2;
/* change global variable */
itsGlobal = 4;

 printf("Global %d Local %d\n", itsGlobal, itsLocal);
}
 
printf("Global %d Local %d\n", itsGlobal, itsLocal);
return 0;

}

 ECE 220 - Fall 2024 Dr. Ivan Abraham

• Linkage describes how identifiers
can or cannot refer to the same
entity throughout the whole
program or single translation unit.

• None vs. internal vs. external

• Helps linker disambiguate
identifiers between translation
units.

• Linkage is external by default
unless static (functions) or
const (variables) or block
scoped.

27

About variables: linkage
Translation unit: Technical term for a C source file
just before compilation, i.e. already preprocessed.

None: The identifier can be
referred to only from the scope
it is in. All function parameters
and all non-extern block-
scope variables (including the
ones declared static) have
this linkage
Note: Some concepts in this & following slides are

discussed in far more detail than in the textbook. The
reason is two-fold: (a) if you ever go online and try reading

material on C, you will inevitably run into some of these
concepts and technical jargon and (b) while it is okay to

sweep things under the rug for the average coder, a good
programmer should be aware what exactly is going under

the rug before doing the sweeping.

Advanced topic

 ECE 220 - Fall 2024 Dr. Ivan Abraham

• Linkage describes how identifiers
can or cannot refer to the same
entity throughout the whole
program or single translation unit.

• None vs. internal vs. external

• Helps linker disambiguate
identifiers between translation
units.

• Linkage is external by default
unless static (functions) or
const (variables) or block
scoped.

28

About variables: linkage
Translation unit: Technical term for a C source file
just before compilation, i.e. already preprocessed.

Internal: The identifier can be
referred to from all scopes in
the current translation unit.
All static file-scope
identifiers (both functions and
variables) have this linkage.

Advanced topic

 ECE 220 - Fall 2024 Dr. Ivan Abraham

• Linkage describes how identifiers
can or cannot refer to the same
entity throughout the whole
program or single translation unit.

• None vs. internal vs. external

• Helps linker disambiguate
identifiers between translation
units.

• Linkage is external by default
unless static (functions) or
const (variables) or block
scoped.

29

About variables: linkage
Translation unit: Technical term for a C source file
just before compilation, i.e. already preprocessed.

External: The identifier can be
referred to from any translation
units in the entire program. All
non-static functions,
all extern variables (unless
earlier declared static), and
all file-scope non-
static variables have this
linkage.

Advanced topic

 ECE 220 - Fall 2024 Dr. Ivan Abraham

• Linkage describes how identifiers
can or cannot refer to the same
entity throughout the whole
program or single translation unit.

• None vs. internal vs. external

• Helps linker disambiguate
identifiers between translation
units.

• Linkage is external by default
unless static (functions) or
const (variables) or block
scoped.

30

About variables: linkage
/* This is prog_part.c */
#include <stdio.h>

void foo(int my_num){ // foo has extern linkage
 int a=10; // a has no linkage
 printf("Foo got %d", my_num);
}

/* This is prog_main.c */
#include <stdio.h>

void foo(int my_num);

int main(void){

int a_value = 10;
printf("Main value is: %d\n", a_value);
printf("Calling foo with %d \n", ++a_value);
foo(a_value);

}

Advanced topic

 ECE 220 - Fall 2024 Dr. Ivan Abraham

• Linkage describes how identifiers
can or cannot refer to the same
entity throughout the whole
program or single translation unit.

• None vs. internal vs. external

• Helps linker disambiguate
identifiers between translation
units.

• Linkage is external by default
unless static (functions) or
const (variables) or block
scoped.

31

About variables: linkage
foo no longer available outside prog_part.c

/* This is prog_part.c */
#include <stdio.h>

int a=10; // A has extern linkage now
static void foo(int my_num){ // Intern linkage
 printf("Foo got %d", my_num);
}

/* This is prog_main.c */
#include <stdio.h>

void foo(int my_num);

int main(void){
 int a_value = 10;
 extern int a;
 printf("Main value is: %d\n", a_value);
 printf("Calling foo with %d \n", ++a_value);
 foo(a_value); // Will raise error
 printf("Value of a is: %d\n", a);
}

Tells linker a is defined elsewhere

Advanced topic

 ECE 220 - Fall 2024 Dr. Ivan Abraham

• A variables storage class/
duration determines how long
data is maintained in memory

• Can be automatic, static or
dynamic (advanced)

32

About variables: storage class

• Automatic: The storage is
allocated when the block in
which the object was declared
is entered and deallocated
when it is exited by any means
(goto, return, reaching the
end).

 ECE 220 - Fall 2024 Dr. Ivan Abraham

• A variables storage class/
duration determines how long
data is maintained in memory

• Can be automatic, static or
dynamic (advanced)

33

About variables: storage class

• Static: The storage duration is
the entire execution of the
program, and the value stored
in the object is initialized only
once, prior to the main
function. All objects
declared static and all
objects with either internal or
external linkage have this
storage duration.Yes it is unfortunate. A good

reference is available here.

https://en.cppreference.com/w/c/language/storage_duration

 ECE 220 - Fall 2024 Dr. Ivan Abraham

#include <stdio.h>

void printx(){
static int x = 0;
x++;
printf("value of x is %d \n",x);

}

int main(){
printx();
printx();
printx();
printx();

return 0;
}

34

About variables: storage class
#include <stdio.h>

void printx(){
int x = 0;
x++;
printf("value of x is %d \n",x);

}

int main(){
printx();
printx();
printx();
printx();

return 0;
}

Compare

 ECE 220 - Fall 2024 Dr. Ivan Abraham

Next time

• Operators in C

• Basic I/O functions

• Control structures in C

• Debugging with GDB

35

