
ECE 220 - Fall ’24 Dr. Ivan Abraham

ECE 220
Lecture x0003 - 09/03

Slides based on material by: Yuting Chen, Yih-Chun Hu & Ujjal Bhowmik

ECE 220 - Fall ’24 Dr. Ivan Abraham

Recap
• Last lectures, we talked about

• Keyboard/Display polling and handshaking

• Subroutines & TRAP mechanism

• Callee and caller save conventions

• TRAP’s RTI uses a different mechanism than RET R7

• The mechanism is called stack - an Abstract Data Type

• Reminders:

• MP1 is due Thursday. Make use of office hours!

2

Cover again
today

ECE 220 - Fall ’24 Dr. Ivan Abraham

MP 1- Letter frequency decomposition
• Common practice in programming to decompose a task into

smaller subtasks

• What did we learn that can help us do this?

• The task:

• Given an ASCII string (terminated by NUL)

• Count the occurrences of each letter (regardless of case), and

• The number of non-alphabetic characters, and

• Print out a histogram

3

ECE 220 - Fall ’24 Dr. Ivan Abraham

• Divide into two tasks

• Counting a character

• Printing histogram

4

MP 1- Letter frequency decomposition

Which bin to increment?

char
== NUL

Increment
counter

Print
Histogram

YES

Increment
bin

NO

Can only do this after checking entire string.
When is string done? → NUL

http://xahlee.info/comp/unicode_arrows.html

ECE 220 - Fall ’24 Dr. Ivan Abraham

• Which bin to increment?

• Need to determine if character is alphabetic or non-alphabetic.

5

MP 1- Letter frequency decomposition

x00 x40 x41 x5A x5B x60 x61 x7A x7B x7F

NUL @ A Z [` a z { DEL

char
< ‘A’

YESIncrement
non-alpha

NO Count char
> ‘A’

Increment
bin

ECE 220 - Fall ’24 Dr. Ivan Abraham

• Which bin to increment?

• Need to determine if character is alphabetic or non-alphabetic.

6

MP 1- Letter frequency decomposition

x00 x40 x41 x5A x5B x60 x61 x7A x7B x7F

NUL @ A Z [` a z { DEL

char
< ‘Z’

YESIncrement
alpha

NO Count char
> ‘Z’

Count char
> ‘A’

ECE 220 - Fall ’24 Dr. Ivan Abraham

• Which bin to increment?

• Need to determine if character is alphabetic or non-alphabetic.

7

MP 1- Letter frequency decomposition

x00 x40 x41 x5A x5B x60 x61 x7A x7B x7F

NUL @ A Z [` a z { DEL

char
< ‘a’

YESIncrement
non-alpha

NO Count char
> ‘a’

Count char
> ‘Z’

ECE 220 - Fall ’24 Dr. Ivan Abraham

• Which bin to increment?

• Need to determine if character is alphabetic or non-alphabetic.

8

MP 1- Letter frequency decomposition

x00 x40 x41 x5A x5B x60 x61 x7A x7B x7F

NUL @ A Z [` a z { DEL

char
< ‘z’

YESIncrement
alpha

NO Increment
non-alpha

Count char
> ‘a’

ECE 220 - Fall ’24 Dr. Ivan Abraham

• What about initialization etc? We need to do three things:

• fill the histogram with 0s,

• load any useful values (such as ASCII characters to check the
region boundaries)

• and point to the start of the string

• How to increment alpha → see MP (code already provided)

9

MP 1- Letter frequency decomposition

http://xahlee.info/comp/unicode_arrows.html

ECE 220 - Fall ’24 Dr. Ivan Abraham

MP 1- Letter frequency decomposition

10

char
!= NUL

char
< ‘A’

char
< ‘Z’

char
< ‘a’

Increment
counter

YES

Increment
alpha

Increment
non-alpha

char
< ‘z’

YES YES YES YES

NO NO NO NO

Print
Histogram

NO

Initialize

Code you need to write
is this part.

ECE 220 - Fall ’24 Dr. Ivan Abraham

Abstract Data Types
• Abstract Data Type (ADT) refers to a model for a data type that

combines the logical description of how data is viewed and the
operations that are allowed on it without regard to how they will be
implemented.

• Example: Integers as an ADT are zero, the natural numbers and
their additive inverses with the usual operations of addition,
multiplication, subtraction, etc. However, on a computer they
may be implemented as 2’s complements, IEEE 754, etc.

11

ECE 220 - Fall ’24 Dr. Ivan Abraham

Other ADTs

12

• Some other Abstract Data Types

• Queues (example of FIFO: First-In-First-Out)

• Linked lists

• Trees

• Dictionaries

ECE 220 - Fall ’24 Dr. Ivan Abraham

Stack ADT

13

• Two main operations

• PUSH: add an item to the stack

• POP: remove an item from the stack

A single element

1999

After a PUSH

1986

After two more
 PUSHes

2019

After a POP

1998

ECE 220 - Fall ’24 Dr. Ivan Abraham

Stack

14

• It is a LIFO (Last-In-First-Out) storage structure

• The (L)ast thing you put (I)n is the (F)irst thing you take (O)ut

• The first thing you put in is the last thing you take out

• Main operations are: PUSH/POP

• Most implementations also offer:

• PEEK: view top of the stack without popping an element

• Methods to check if stack is ISFULL or ISEMPTY

Together called
stack protocol

ECE 220 - Fall ’24 Dr. Ivan Abraham

Naive implementation

15

Empty: NO

TOP22

After one push

Empty: NO

TOP

22

17

4

10

After three pushes

Empty: NO

TOP

22

17

After two pops

Empty: YES

TOP

Initial state

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

ECE 220 - Fall ’24 Dr. Ivan Abraham

Another look at a stack

16

First pancake After one push
(Second pancake)

After two
pops

After two more
pushes

ECE 220 - Fall ’24 Dr. Ivan Abraham

Stack
• What was the difference between the quarter version and the

pancake version?

17

1999 2019TOP TOP

TOP

TOP

Data moved

Pointer moved

ECE 220 - Fall ’24 Dr. Ivan Abraham

Software implementation

18

In this implementation, data do not move in memory.

 By convention, R6 holds the top of stack (TOS) pointer.

TOP

Initial state

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x4000R6

22

After one push

x3FFF R6

TOP

17

10

22

4

After three pushes

x3FFC R6

TOP

After two pops

22

17

4

10

x3FFE R6

TOP

No longer
accessible

under stack
protocol

ECE 220 - Fall ’24 Dr. Ivan Abraham

• By convention in LC3, we will use R6 for TOS
and R0 for priming pushes and completing pops.

• Basic PUSH code:

• Basic POP code:

Stacks in LC3

19

ADD R6, R6, #-1 ;decrement TOP

STR R0, R6, #0 ;store data

LDR R0, R6, #0 ;load data

ADD R6, R6, #1 ;increment TOP

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

Also by convention the stack “grows towards zero”.

ECE 220 - Fall ’24 Dr. Ivan Abraham

Stacks in LC3 - Pop

20

• What happens if stack is empty?
Or full?

• Need to detect overflow and
underflow.

• Use concept of exit code.

• Use R5 to indicate success
(0) or failure (1) of
operations.

Underflow YES

R0 ← value

R5 ←1

R5 ←0

NO

R6 ← R6 + 1

R6 == x4000

Assume stack as in the previous slide: x3FFB (inclusive) - x4000 (exclusive) are the memory locations.

ECE 220 - Fall ’24 Dr. Ivan Abraham

Stacks in LC3 - Push

21

• What happens if stack is empty?
Or full?

• Need to detect overflow and
underflow.

• Use concept of exit code.

• Use R5 to indicate success
(0) or failure (1) of
operations.

Overflow YES

R6 ← R0
R5 ←1

R5 ←0

NO

R6 ← R6 - 1

R6 == x3FFB

Assume stack as in the previous slide: x3FFB (inclusive) - x4000 (exclusive) are the memory locations.

ECE 220 - Fall ’24 Dr. Ivan Abraham

Stacks in LC3

22

POP AND R5, R5, #0
LD R1, EMPTY
ADD R2, R6, R1
BRz Failure
LDR R0, R6, #0
ADD R6, R6, #1
RET

Failure ADD R5, R5, #1
RET

EMPTY .FILL xC000
;EMPTY <— -x4000

PUSH AND R5, R5, #0
LD R1, MAX
ADD R2, R6, R1
BRz Failure
ADD R6, R6, #-1
STR R0, R6, #0
RET

Failure ADD R5, R5, #1
RET

MAX .FILL xC005
; MAX <-- -x3FFB

POP Routine PUSH Routine

Exercise: Modify the above routines to save registers we will need.

ECE 220 - Fall ’24 Dr. Ivan Abraham

A note about convention(s)
• In the examples, the TOS (top-of-stack pointer) was pointing to

the current top-of-stack.

• This is the convention followed in the textbook.

• Another convention is to have TOS point to the next available
spot.

• You should be able to handle either convention!

23

ECE 220 - Fall ’24 Dr. Ivan Abraham

Textbook version

PUSH: R6 ← R6 - 1 then R6 ← R0

24

TOP

Initial state

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x4000R6

After one push

x3FFF R6
TOP

17

22

4

After three pushes

x3FFC R6

TOP10

After two pops

TOP

22

17

4

10

x3FFE R6

STACK_TOP is at current top of stack

POP: R0 ← R6 then R6 ← R6 + 1

22

ECE 220 - Fall ’24 Dr. Ivan Abraham

Alternate version

PUSH: R6 ← R0 then R6 ← R6 - 1

25

TOP

Initial state

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x3FFFR6

After one push

x3FFE R6

TOP

17

10

22

4

After three pushes

x3FFB R6

TOP

After two pops

TOP

22

17

4

10

x3FFE R6

STACK_TOP is at next available spot

POP: R6 ← R6 + 1 then R0 ← R6

22

ECE 220 - Fall ’24 Dr. Ivan Abraham

Example: palindrome check

26

• Palindromes are numbers or strings that read the same forward as
well as backward.

• madam, refer, racecar, kayak

• 12/21/33 - 12:21

• Was it a car or a cat I saw?

•

• How to check if a string is a palindrome?
12321 = 1113

ECE 220 - Fall ’24 Dr. Ivan Abraham

LC3 Exercise/Demo:
 Palindrome check

27

An implementation of the stack PUSH & POP protocols is provided
on Git. Use it to fill in the code to check if the 7-letter string

starting at STRSTART is a palindrome or not.

ECE 220 - Fall ’24 Dr. Ivan Abraham

Example: balanced parentheses

28

• Consider a string parsing
algorithm where protocol where

• Encounter a push on
stack

• Encounter a pop
from stack and compare with
popped item

(, [,{ ↦

),], } ↦

• When are the parenthesis
matched?

• No underflow AND

• All comparisons ✓ AND

• Stack empty when
finished parsing

ECE 220 - Fall ’24 Dr. Ivan Abraham

Example: RPN arithmetic

29

• Traditional arithmetic notation is called infix notation. Operations
are inserted between operands. E.g. or

• Requires use of parenthesis to indicate order of operations

• An alternative notation is called postfix notation a.k.a Reverse
Polish notation (RPN). E.g. or

• Implemented properly, does not require parenthesis/brackets

5 + 3 3 × 4

53+ 34 ×

ECE 220 - Fall ’24 Dr. Ivan Abraham

Practice RPN - MP2 material

30

• Note:

• Consider:

• What does it evaluate to?

• What is the infix version of the above?

53 − ↦ 5 − 3

34 * 72 − 3 * +

