
 ECE 220 - Fall ’24 Dr. Ivan Abraham

ECE 220
Lecture x0000 - 08/27

Slides based on material by: Yuting Chen, Yih-Chun Hu & Ujjal Bhowmik

 ECE 220 - Fall ‘24 Dr. Ivan Abraham

Course logistics
• Lectures: Tuesdays & Thursday

• Three sections offered by different instructors

• Prof. Yuting Chen (1230, BL1), Prof. Yih-Chun Hu (1100, BL2) and
this one (1400, BL3).

• Labs: Fridays

• Starts on the hour, every hour from 0900 hrs until 1650 hrs

• Office hours: Schedule posted to website

2

https://courses.grainger.illinois.edu/ece220/fa2024/schedule/course_timings/

 ECE 220 - Fall ‘24 Dr. Ivan Abraham

Course logistics
• Course Website (and syllabus)

• Grading: Gradescope + autograder

• Discussions: Campuswire

• Quizzes: CBTF

• Machine problems (MPs): Github

• Textbook: Patt & Patel (3rd Ed)

3

x0010

x0011

https://courses.grainger.illinois.edu/ece220/fa2024/

 ECE 220 - Fall ‘24 Dr. Ivan Abraham

Course logistics
• MPs: 12 in total, lowest dropped

(except MP 12)

• Quizzes (in-person in CBTF): 6 total,
lowest dropped

• Exams (in-person, on-paper): 09/26
and 10/31

• Labs: make up points lost on MPs

4

 ECE 220 - Fall ’24 Dr. Ivan Abraham

Syllabus

5

 ECE 220 - Fall ’24 Dr. Ivan Abraham

Quick recap of ECE 120

6

 ECE 220 - Fall ’24 Dr. Ivan Abraham

Computation
Von Neumann model

• Five major components:

1. Memory

2. Input

3. Output

4. Processing unit

5. Control unit

7

Figure 4.1 - P&P 3rd Ed.

 ECE 220 - Fall ’24 Dr. Ivan Abraham

LC3 Review
• Eight GPRs - denoted R0, R1, …, R7

• Data type: 16-bit 2’s complement integers

• Addressing: Locations x0000 - xFFFF contain 16 bits each

• Addressing modes:

• Immediate, register, PC-relative, base + offset, indirect

8

 ECE 220 - Fall ’24 Dr. Ivan Abraham

LC3 - Review
Instruction set

9

Figure A.2 - P&P 3rd Ed.

Operation Data movement Program flow

Set
condition

codes

 ECE 220 - Fall ’24 Dr. Ivan Abraham

LC3 - Review
Addressing modes

• PC relative, the address is calculated by adding an offset to the incremented
program counter, PC.

• Register relative, address is read from a register.

• Indirect, address is read from a memory location who”s address is calculated
by adding an offset to the incremented program counter.

• Load effective address (LEA), address is calculated by adding an offset to
the incremented program counter. The address itself (not its value) is stored in
a register.

10

 ECE 220 - Fall ’24 Dr. Ivan Abraham

LC3 - Review
Addressing modes

11

Opcode Name Assembly Operation

LD Load LD DR, label dr = mem[pc + SX(offset9)]

LDR Load Register LDR DR, BaseR, offset6 dr = mem[baseR + SX(offset6)]

LDI Load Indirect LDI DR, label dr = mem[mem[pc + SX(offset9)]]

LEA Load Eff. Addr. LEA DR, target dr = pc + SX(offset9)

ST Store ST SR, label mem[pc + SX(offset9)] = sr

STR Store Register STR SR, BaseR, offset6 mem[baseR + SX(offset6)] = sr

STI Store Indirect STI SR, label mem[mem[pc + SX(offset9)]] = sr

Sign-extend (SX), by replicating the most significant bit as many times
as necessary to extend to the word size of 16 bits.

 ECE 220 - Fall ‘24 Dr. Ivan Abraham

Exercise

12

.ORIG x3000
 LD R1, LABEL

 LDI R2, LABEL

 LDR R3, R2, #1

 LEA R4, LABEL

 LABEL .FILL x4001

.END

What are the values of R1,R2,R3 & R4 at each step?

; x4001 x6001

; ……

; x6001 x7001

; x6002 x7002

Assume

Answers
Ans
R1 x4001
R2 x6001
R3 x7002
R4 x3004

 ECE 220 - Fall ‘24 Dr. Ivan Abraham

Exercise

• Write a program to perform the
multiplication 5 x 4.

• Need a way to store 5 and 4 as
arguments

• There is no multiplication operation

• So have to repeat addition

13

.ORIG x3000
; R0 - output, init to 0
; R1 - multipicand 1, init to 5
; R2 - loop counter, init to multiplicand 2

AND R0, R0, #0
AND R1, R1, #0
AND R2, R2, #0

ADD R1, R1, #5
ADD R2, R2, #4

LOOP BRz DONE
 ADD R0, R0, R1
 ADD R2, R2, #-1
 BR LOOP

DONE HALT
.END

 ECE 220 - Fall ’24 Dr. Ivan Abraham

LC3 - Review
Pseudo-ops
• Looks like instruction but the “opcode” starts with a dot.

• Assembler instructions/directives that make our lives easier.

14

Opcode Operand Meaning

.ORIG address Starting address of program

.END End of program

.BLKW n Allocate n words of storage

.STRINGZ n-character string Allocate n+1 locations, initialize with
characters and null terminator

 ECE 220 - Fall ’24 Dr. Ivan Abraham

LC3 - Review
Microarchitecture

15

Figure C.1 - P&P 3rd Ed. Figure C.3 - P&P 3rd Ed.

 ECE 220 - Fall ‘24 Dr. Ivan Abraham

Textbook v2 vs. v3
• What is different in v3 compared

to v2?

• LEA no longer sets condition
codes

• TRAP instructions do not
store linkage in R7

This probably doesn’t
mean much to you right
now

16

• What does that mean for you?

• Do MPS on EWS machines

• Practice for the quiz on the
online simulator: https://
courses.grainger.illinois.edu/
ece220/sp2020/lc3web/
index.html

https://courses.grainger.illinois.edu/ece220/sp2020/lc3web/index.html
https://courses.grainger.illinois.edu/ece220/sp2020/lc3web/index.html
https://courses.grainger.illinois.edu/ece220/sp2020/lc3web/index.html
https://courses.grainger.illinois.edu/ece220/sp2020/lc3web/index.html

 ECE 220 - Fall ‘24 Dr. Ivan Abraham

Memory mapped I/O
• How do we communicate with the computer?

• Memory-mapped I/O: Hardware devices (i.e. their registers) are treated the
same as the computer’s main memory and addressable the same way

• Memory of peripherals is physically separate from main memory

• Alternative: Port mapped I/O (requires having more specialized
instructions)

• In LC3: KBDR,KBSR,DSR,DDR are used for [K]eyboard and [D]isplay
respectively.

17

https://en.wikipedia.org/wiki/Memory-mapped_I/O_and_port-mapped_I/O

 ECE 220 - Fall ’24 Dr. Ivan Abraham

LC3 - Input/Output (IO)

18

Address I/O Register Name I/O Register Function

xFE00 Keyboard status register
(KBSR)

The ready bit (bit[15]) indicates
if the keyboard has received a

new character

xFE02 Keyboard data register
(KBDR)

Bits [7:0] contain the last
character typed on the

keyboard

xFE04 Display status register
(DSR)

The ready bit (bit[15]) indicates
if the display device is ready to

receive another character to
print on the screen

xFE06 Display data register
(DDR)

A character written in bits [7:0]
will be displayed displayed on

the screen
Figure A.1 - P&P 3rd Ed.

 ECE 220 - Fall ’24 Dr. Ivan Abraham

LC3 - Input/Output (IO)

19

Address I/O Register Name I/O Register Function

xFE00 Keyboard status register
(KBSR)

The ready bit (bit[15]) indicates
if the keyboard has received a

new character

xFE02 Keyboard data register
(KBDR)

Bits [7:0] contain the last
character typed on the

keyboard

xFE04 Display status register
(DSR)

The ready bit (bit[15]) indicates
if the display device is ready to

receive another character to
print on the screen

xFE06 Display data register
(DDR)

A character written in bits [7:0]
will be displayed displayed on

the screen

 ECE 220 - Fall ’24 Dr. Ivan Abraham

LC3 - Input from keyboard
Basic routine

20

Handshaking is performed using KBSR & KBDR

• When user presses a key

• Its ASCII code is placed in KBDR[0:7]

• KBSR[15] is set to 1 (ready bit)

• Keyboard is disabled, i.e., any further keypress is ignored

• When KBDR is read by CPU

• KBSR[15] is set to 0

• Keyboard is enabled

 ECE 220 - Fall ’24 Dr. Ivan Abraham

LC3 - Input from keyboard

21

Basic routine

Read
character

New
char?NO

YES

.ORIG x3000

;Create a loop to
check KBSR

;If ready bit unset
loop again

;If ready bit set,
read KBDR into R0

KBSR .FILL xFE00

KBDR .FILL xFE02

 ECE 220 - Fall ’24 Dr. Ivan Abraham

LC3 - Display to console

22

Handshaking is performed using DSR & DDR

• When display is ready to present a character

• DSR[15] is set to 1 (ready bit)

• When a new character is written to DDR

• DSR[15] is set to 0

• Any other chars written to DDR are ignored

• DDR[7:0] is displayed

Basic routine

 ECE 220 - Fall ’24 Dr. Ivan Abraham

LC3 - Display to console
Basic routine

23

Write
Character

Screen
ready?NO

YES

.ORIG x3000

;Create a loop to
check DSR

;If ready bit unset
loop again

;If ready bit set,
write R0 into DDR

DSR .FILL xFE04

DDR .FILL xFE06

 ECE 220 - Fall ’24 Dr. Ivan Abraham

Exercise

24

• Write a program to display
“ECE 220 is fun!” to the
console. You can use the
pseudo-op .STRINGZ to
store string to memory. Do
not use TRAP codes (if you
know what they are).

.ORIG x3000
LEA R2, MY_STRING

CHRLOOP LDR R0, R2, #0
BRz ALLDONE

 DPOLL
 LDI R1, DSR
BRzp DPOLL
STI R0, DDR
ADD R2, R2, #1

BRnzp CHRLOOP

ALLDONE
HALT

DSR .FILL xFE04
DDR .FILL xFE06

MY_STRING .STRINGZ "ECE 220 is fun!"

.END

 ECE 220 - Fall ‘24 Dr. Ivan Abraham

Issues?

• Limited amount of GPRs - polling display & keyboard uses up two
of them

• Code often repeated - inefficient to keep inserting same code over
& over again

• Human error - keeping track of registers & having direct access to
hardware registers is recipe for unforced errors & bugs

25

 ECE 220 - Fall ’24 Dr. Ivan Abraham

Solution?

26

• Subroutines & repeated code

• Also called functions

• TRAP routines

• More next time

