INSTRUCTIONS:

Begin the test when you are verbally instructed. You have 40 minutes to complete the exam.

Write your name on every page. Sign and write your NetID on the cover page.

This is a closed book, closed notes quiz. An equation sheet is provided. A calculator is allowed.

No credit will be given for each problem if you do not show the complete work, even if the answer is correct. Numerical answers must be followed by units wherever units exist.

Re-grading policy: You must turn in your paper to your instructor for re-grading within 7 days following the day in which the exam papers are returned to the class. Attach a sheet specifying which problem(s) is to be looked at, and for what reasons. Do not write or make changes on the exam pages.

By signing below, as the student named above, I agree that I will observe the Student Code of the University of Illinois.

Signature: __

NetID: __
Problem 1 (6 points)

Draw the **Thevenin equivalent circuit** between the terminals A-B in the circuit below.

![Thevenin equivalent circuit diagram]

Problem 2 (6 points)

Use **loop analysis** to find currents i_1 and i_2.

![Loop analysis diagram]
Problem 3 (6 points)

In the circuit shown below, find the power consumed or supplied by each element E_1, E_2, and E_3.

\[
\begin{array}{c}
\text{Element} \\
E_1 \\
E_2 \\
E_3 \\
\end{array}
\begin{array}{c}
\text{Power} \\
_ \\
_ \\
_ \\
\end{array}
\]

Problem 4 (6 points)

In the circuit shown below, find voltages V_2, V_3, and V_4.

\[
\begin{array}{c}
\text{Element} \\
V_2 \\
V_3 \\
V_4 \\
\end{array}
\begin{array}{c}
\text{Voltage} \\
_ \\
_ \\
_ \\
\end{array}
\]
Problem 1 (8 points)
Find R_{AB} between the terminals A-B in the circuit below.

![Circuit Diagram]

Problem 6 (8 points)
Use node analysis to write series of equations which could be used to solve voltages V_1, V_2 and V_3 in the circuit shown below. DO NOT SOLVE THE EQUATIONS.

![Circuit Diagram]
Grades:

<table>
<thead>
<tr>
<th>Problem</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/6</td>
</tr>
<tr>
<td>2</td>
<td>/6</td>
</tr>
<tr>
<td>3</td>
<td>/6</td>
</tr>
<tr>
<td>4</td>
<td>/6</td>
</tr>
<tr>
<td>5</td>
<td>/8</td>
</tr>
<tr>
<td>6</td>
<td>/8</td>
</tr>
<tr>
<td>Total</td>
<td>/40</td>
</tr>
</tbody>
</table>
Ohm’s Law:

\[V = iR \]

Resistor Combinations:

(a) Series:

\[R_{eq} = \sum_{k=1}^{N} R_k \]

(b) Parallel:

\[\frac{1}{R_{eq}} = \sum_{k=1}^{N} \frac{1}{R_k} \]

\[R_{eq} = R_1 + R_2 \]

\[R_{eq} = \frac{R_1 R_2}{R_1 + R_2} \]

Voltage and Current Dividers:

\[V_1 = \frac{VR_1}{R_1 + R_2} \]

\[V_2 = \frac{VR_2}{R_1 + R_2} \]

\[I_1 = \frac{IR_2}{R_1 + R_2} \]

\[I_2 = \frac{IR_1}{R_1 + R_2} \]

Source transformation

\[I = \frac{V}{R} \]

Thevenin Equivalent

\[V_T = V_{oc} \]

\[R_T = R_{eq} \]