
Akhil Bonela (abonela2) and Jizheng He (jizheng4)

Capacitive Touch Numpad Final Report

1. Introduction

We are attempting to make a number pad addon based on capacitive touch sensors for

computers without one. Number pads are frequently used in scenarios from 3D Modelling, CAD,

and other complex software to easy-access numerical input. Many computers are restricted by

size and design methods, so they’re not manufactured with this convenient tool. Developing a

"keyless" number pad addon with capacitive touch sensors makes for a fantastic project, as well

as an excellent learning experience.

2. Design

The general idea of the system is to take an input sensed by

the touch sensor grid and show it on two display units. The

MPR121 microcontroller must constantly scan the

capacitance values for every row and column to sense a touch

input. A touch input means that the capacitance values of the

row and column that intersect at the input will increase. It

must be noted that the output of the MPR121 microcontroler

is inversely proportional to capacitance. If the capacitance

values pass a certain threshold, the Arduino will determine

which key was “pressed” from the location of the touch

signal. The key’s value will be displayed on the computer, and the corresponding LED

underneath the key will light up.

Capacitive Touch Grid

A capacitor is a device that stores electrical energy within an electric field by charging

and discharging. It’s composed of two conductive surfaces (called electrodes) with a

non-conductive layer (a dielectric) in between them. In a capacitive sensor, the sensor itself is the

positive electrode of the capacitor, the dielectric is the air, and the grounded electrode is a finger.

The current design is a self capacitence sensor. This means that each electrodeworks independent

to the others and capacitance will increase as proximity increases due to the formula:

𝐶 = ε𝐴
𝑑

Where C is capacitance, ε is the dielectric constant, A is the electrode surface area, and d is the

distance between the electrodes.

The number pad design is a 4x5 grid which requires 20 touch sensors. Rather than

building 20 sensors with 20 individual connections, a capacitive touch grid with only 9

connections was implemented to save space and create a more efficient number pad (see

Appendix B). A capacitive touch grid works like an individual sensor. When a point is touched,

only the capacitance for both the row and column that intersect at that point increases.

In the current design, a clear ITO (Indium Tin Oxide) coated PET plastic is used as the

positive electrode. Thin scratches were made in a grid pattern to scrape off some of the ITO and

create 20 isolted sensors. Since the ITO was scratched away, there needed to be a conductive

material like one-side conductive copper tape (inverted) to connect all the sensors. One end of

each row and column is connected to the capacitive touch detector MPR121 microcontroler,

which, in turn, is connected to the Aurduino.

LED Matrix:

The purpose of the LED matrix is to notify the user that the capacitive touch grid is

sensing their input. In the design, the matrix is located underneath the capacitive touch grid.

When a key is touched on the grid, the corresponding LED (the one right below it) will light up

until the touch input ends. To accomplish this, a PCB was devised (see Appendix C) that utilizes

th concept of multiplexing for increased efficiency and to reduce the number of connections

required. A proof of concept was made on a breadboard at a smaller scale.

Arduino Numpad Program

We use MPR121, the 12-input-pin capacitive touch detector chip. The chip uses I2C to

communicate with Arduino. Instead of messing around with I2C protocols, we can utilize the

MPR121 library written by Adafruit [4]. Note that all wires connected to the input pins form a

grid in the capacitive num pad, thus decreasing the capacitance. Therefore, we cannot directly

use the auto-generated boolean value to determine whether a touch is in place; we need to use the

raw data and define thresholds for each pin by ourselves.

We also need to emulate the keyboard using Serial outputs. A basic keystroke contains a

buffer of 8 bytes. The third byte is our main concern that identifies which key is being pressed.

The keycode table for a keyboard can be found in [6]. For each touch detected, we will send a

buffer with the keycode in its third byte and send an empty buffer after ten milliseconds (emulate

key releasing) into the Serial.

Arduino Uno is not recognized as a HID device. This means we need to reflash the

bootloader with a hex file that identifies the Arduino as a keyboard HID device. First, we will

upload our program and test it thoroughly (since we cannot load programs in keyboard mode).

We will then wipe the original bootloader by shorting the leftmost two pins of the top-left six

pins on the Arduino and update the driver so that our flashing software, Flip, can successfully

recognize it. Finally, we will flash the Arduino with the hex file and reconnect Arduino to the

computer. Detailed descriptions and hex files can be found in [3].

3. Results:

We successfully created a num pad addon for computers without one. We used capacitive

touch detection instead of traditional pressing & releasing of keys. We successfully translated

touch signals into emulated keystroke signals and made the system plugin-to-go. We also

completed a LED Matrix PCB design and implemented a proof-of-concept prototype.

4. Problems and Challenges:

There are some manufacturing errors with the capacitive touch grid. Only 6 out of the 20

sensors detect touch. The cause of this problem is the tape binding the inverted copper tape

loosening. Since the design relies on the copper tape to be pulled tight against the PET plastic for

the sensors to work, loosened bindings pose a great threat to the integrity of the capacitive touch

grid.

During the programming process, some pins also have extremely close capacitance

values with and without touch. It also took dozens of trials and errors to find out the correct

driver and steps to flash the Arduino Uno, including testing out multiple different hex files with

the same filename in blogs, etc.

Due to time constraints, the LED matrix PCB could not be manufactured.

5. Future Plans:

As of right now it is uncertain whether this project will be continued, however there are a

number of issues and improvements to focus on if it will be. The most important issue is

developing a new and more durable capacitive touch grid where all the sensors work. Perhaps, as

an improvement, a the grid could use mutual capacitance instead of self (can detect multiple

touches). An fun improvement to make would be to create multiple keyboard layouts in addition

to the number pad (like one specifically designed for gaming). This will alow the project to be

used for a greater variety of purposes.

6. References:

[1] Electronoobie, “ESP8266: Controlling a LED matrix with the 74HC595 ICs - techtutorialsx,”

techtutorialsx.com.

https://techtutorialsx.com/2016/09/17/esp8266-controlling-a-led-matrix-with-the-74hc595-ics/

(accessed Dec. 10, 2021).

[2] Texas Instruments, “SNx4HC595 8-Bit Shift Registers With 3-State Output Registers,”

ti.com. https://www.ti.com/lit/ds/symlink/sn74hc595.pdf (accessed Dec. 10, 2021)

[3] “Tutorial: How to Use Arduino Uno as HID | Part 1: Arduino Keyboard Emulation,” Tutorial,

Jul. 14, 2020.

https://techtutorialsx.com/2016/09/17/esp8266-controlling-a-led-matrix-with-the-74hc595-ics/
https://www.ti.com/lit/ds/symlink/sn74hc595.pdf

https://techtotinker.blogspot.com/2020/07/tutorial-how-to-use-arduino-uno-as-hid.html?m=1

(accessed Dec. 10, 2021).

[4] “Adafruit MPR121 Library,” GitHub, Nov. 07, 2021.

https://github.com/adafruit/Adafruit_MPR121/blob/master/examples/MPR121test/MPR121test.i

no.

[5] “Capacitive Sensing for Dummies,” Instructables.

https://www.instructables.com/capacitive-sensing-for-dummies/.

[6] “USB HID Usages,” Freebsddiary.org, 2021.

https://www.freebsddiary.org/APC/usb_hid_usages (accessed Dec. 11, 2021).

[7] Bare Conductive, “Our hardware uses Capacitive Sensing. What is it?,” bareconductive.com

2021.

https://www.bareconductive.com/blogs/blog/the-touch-board-uses-capacitive-sensing-what-is-it

(Accessed 10 December 2021).

https://techtotinker.blogspot.com/2020/07/tutorial-how-to-use-arduino-uno-as-hid.html?m=1
https://github.com/adafruit/Adafruit_MPR121/blob/master/examples/MPR121test/MPR121test.ino
https://github.com/adafruit/Adafruit_MPR121/blob/master/examples/MPR121test/MPR121test.ino
https://www.instructables.com/capacitive-sensing-for-dummies/

Appendix A. Arduino Code

////////// INCLUDES //////////

#include <Wire.h>
#include <Adafruit_MPR121.h>

////////// CAPACITIVE TOUCH SENSOR //////////

#ifndef _BV
#define _BV(b) (1 << (b))
#endif

Adafruit_MPR121 cap = Adafruit_MPR121();
uint16_t prev_touch = 0;
uint16_t curr_touch = 0;

#define prev_touched(i) (prev_touch & _BV(i))
#define curr_touched(i) (curr_touch & _BV(i))

// Capacitance min threshold when not touching
const int kThreshold[9] = {10, 10, -1, -1, -1, 10, 10, -1, 50};

// Mapping from capacitive grid to key
const int kKeyMapping[5][4] = {
{KEY_1, KEY_2, -1, KEY_3},
{KEY_4, KEY_5, -1, KEY_6},
{-1, -1, -1, -1},
{-1, -1, -1, -1},
{-1, -1, -1, -1}

};

////////// KEYCODES //////////

#define KEY_1 0x59
#define KEY_2 0x5a
#define KEY_3 0x5b
#define KEY_4 0x5c
#define KEY_5 0x5d
#define KEY_6 0x5e
#define KEY_7 0x5f
#define KEY_8 0x60
#define KEY_9 0x61
#define KEY_0 0x62
#define KEY_PERIOD 0x63
#define KEY_PLUS 0x57
#define KEY_MINUS 0x56
#define KEY_MUL 0x55
#define KEY_DIV 0x54
#define KEY_NUMLOCK 0x53
#define KEY_ENTER 0x58

void press_key(int key) {
uint8_t buf[8] = {0};
buf[2] = key;

Serial.write(buf, 8);
buf[2] = 0;
Serial.write(buf, 8);

}

////////// PROGRAM //////////
// #define DEBUG

void setup() {
pinMode(2, OUTPUT);
pinMode(3, OUTPUT);

Serial.begin(9600);
while (!Serial) delay(10);

digitalWrite(3, HIGH);
#ifdef DEBUG
Serial.println("Adafruit MPR121 Capacitive Touch sensor test");

#endif
if (!cap.begin(0x5A)) { // Default addr of I2C

#ifdef DEBUG
Serial.println("MPR121 not found, check wiring?");

#endif
while (1);

}
digitalWrite(3, LOW);

#ifdef DEBUG
Serial.println("MPR121 found!");

#endif
delay(1000);

}

void loop() {
// Get the currently touched pad
curr_touch = 0;

for (uint8_t i=0; i<9; i++) {
int data = cap.filteredData(i);

#ifdef DEBUG
Serial.print("[");
Serial.print(i);
Serial.print("] ");
Serial.print(data);
Serial.print("\t");

#endif

if (data <= kThreshold[i]) curr_touch |= _BV(i);
}

#ifdef DEBUG
Serial.println();

#endif

int x = -1, y = -1;
for (int i = 0; i < 5; i++) {
if ((!prev_touched(i) && curr_touched(i)) || (prev_touched(i) &&

!curr_touched(i))) {
x = i;

}
}
for (int j = 5; j < 9; j++) {
if ((!prev_touched(j) && curr_touched(j)) || (prev_touched(j) &&

!curr_touched(j))) {
y = j;

}
}

if (x != -1 && y != -1) {
if (!prev_touched(x) && curr_touched(x)) { // new touch
press_key(kKeyMapping[x][y-5]);

#ifdef DEBUG
Serial.print(kKeyMapping[x][y-5]);
Serial.print(" pressed at ");

#endif
digitalWrite(2, HIGH);

} else { // release
digitalWrite(2, LOW);

#ifdef DEBUG
Serial.print("Key released at ");

#endif
}

#ifdef DEBUG
Serial.print("(");
Serial.print(x);
Serial.print(", ");
Serial.print(y);
Serial.println(")");

#endif
} else if (x != -1 || y != -1) {
curr_touch = prev_touch;

}

#ifdef DEBUG
Serial.println("==");

#endif

prev_touch = curr_touch;

// put a delay so it isn't overwhelming
delay(100);

}

Appendix B. Capacitive Touch Grid

Appendix C. LED Matrix

