
Wireless Controlled Prosthetic Arm 
Tejus Kurdukar: tkurdu2, Taylor Xia: tyxia2 

Github link: https://github.com/TheRealTaylorXia/Ece-110-Honors-Lab-Project  
 
Purpose 

Our goal was to construct a prosthetic arm capable of responding and interacting with the 
user. The greatest benefit of our design is the added aspect of wireless communication between the 
user and the arm, removing the need to be attached to the apparatus while still enabling accurate 
and precise mimicking of the user’s hand. 

Design Details [1] 
Arduino Unos 

● Used to control servos and power transceiver on Arm-side 
● Reads and maps values from flex sensor to motor angles and sends data on Hand-side  

Flex Sensors 
● Analog sensor that has varying resistance depending on how much it’s bent 
● Resistance values are read, mapped to angles that are writable to servos, and transmitted 

NRF24L01+ Transceivers 
● Transmit and receive radio signals from one Arduino to the other 
● Radio signals contain mapped flex sensor values 

MG996R 55g Micro Servos 
● Total of 5 used to control each finger on the hand 
● Attached to servo bed inside of arm  

 
3D printed Arm Assembly 
 
All parts were designed and obtained from Gael Langevin’s InMoov project, an open source 
3D-printable robot design with provided STL files. The wiring of the fingers involved two strings: 
a front string made of upholstery threading is used to pull the finger down, and an elastic 
material (rubber or nylon) to string is placed in the back of each finger to pull the finger back up. 
The two strings are then fed into a pulley system of five servo motors, designed so that rotating 
the pulley from its 0 position will pull the finger down and moving back to the 0 position will 
allow the finger to move back upwards [2]. Each servo is finely tuned in order to responsively 
move its corresponding finger - the tensions of the elastic restoring strings are adjusted to quick 
response times and the pulleys themselves are slightly offset to move the fingers down more 
immediately. 
 
Transmitter-Side Code and Circuitry [3] 

Each flex sensor is connected to the power and ground rail on the breadboard, with the power 
rail being given 5V from the Arduino. Attached in series with each flex sensor is a 10kΩ resistor 
to create a voltage divider - considering that a flex sensor is simply a variable resistor and that 

https://github.com/TheRealTaylorXia/Ece-110-Honors-Lab-Project


the Arduino can only read voltage values, a voltage divider is necessary to be able to read the 
voltage drop across the flex sensor. Then, after each flex sensor is attached to analog pins of 
the Arduino, the Arduino can use this value to calculate the sensor’s resistance using Ohm’s 
Law. Analog pins output a number, somewhere between the range of 500-200 but each sensor 
is unique in the code. These values are mapped using a function, available from the default 
Arduino library, to a range between 0 and 180, the minimum and maximum angular range of the 
servos. Once that’s done, the mapped values are stored in an int array and sent. [4] 

Receiver-Side Code and Circuitry [5] 

To power the motors, we connected them in parallel with an independent voltage source, using 
two 3.7 V batteries. The motors are then connected to five pins of the Arduino, which will be 
able to send electrical signals to the motors to change their angles. The NRF transceiver is 
connected to the Arduino to receive values from the transmitter side that are used to control the 
angles of each servo 

To establish the connection between two NRF transceivers, it is necessary in code to set them 
both to communicate on the same address and “pipe.” At a high level, this process is analogous 
to connecting the two transceivers on the same network channel, so that they know to 
communicate with each other and no one else. Once they are synchronized with the same data 
rate and clock, the transmitter is initialized to begin writing information on the pipe and the 
receiver is set to read data. [6] 

Results 

To first test that our NRF modules were connected properly, we ran a program found in the 
NRF library which included multiple instances of example code. The program would run through and 
simply output a series of hexadecimals in the serial monitor, indicating whether the Arduino was 
properly connected and speaking to the NRF. We then used a different example program to send a 
simple string message back and forth between the two Arduinos. 

Next, we ran some very short and simple servo test code to test each finger and it’s 
complete range of motion. The program simply started the servo off in the 0 degrees position and 
had a for loop that would increment the angle by 10 until reaching 180 then decrement it back to 0. 

Finally, we assembled everything together to have each of the fingers move independently 
based on the transmitted data values from the flex sensors and Hand-side Arduino. Unfortunately, 
we weren’t able to complete the rock-paper-scissors portion of our goal, however that was only due 
to a lack of time; the fingers of the hand are fully capable of reading and producing the paper, 
scissor, and rock motion. In other words, the hand is physically capable of playing, only the code 
aspect is missing. Overall, then we concluded that we had succeeded in creating our synthetic hand 
and having it respond and interact with the user. 
 



 

Problems and Challenges 

NRF24L01+ Transceivers, Arduino UNOs 

The process of getting the wireless communication system to function properly was the 
most time consuming and frustrating part of this project by far. Using the connection test tutorial 
code we had obtained online, we greatly struggled to get the transceivers to send even simple string 
messages to each other. There were several things we did to troubleshoot this problem: 

1. First, we read online that NRF transceivers occasionally have issues with receiving the 
correct consistent amount of power from Arduinos when outputting 3.3V. A common 
solution to this is to attach ~10uF capacitors to the Vcc and GND terminals of each 
transceiver in order to smooth out voltage and prevent dips and spikes. We attempted this, 
then attempted 100uF capacitors, however neither solution fixed the problem. 

2. Second, we began to wonder if the problem was due to software, and we tried running 
multiple different test codes, running our own, and researching the library more in depth. One 
user online suggested inserting the line: radio.setAutoAck(false);. This had some effect on 
our problem: finally, the transmitter was claiming to be properly functioning and was stating 
that the receiving end of our system was acknowledging the proper signals. Frustratingly 
however, the receiving end of the system was unable to output the supposedly transmitted 
data and was asserting that the transmitter was unavailable.  

3. We attempted to replace the transceivers with new chips, which did not fix the solution and 
indicated that the transceivers were not faulty. 

4. We thought at this point to test the communication between NRFs and their Arduinos despite 
many retries at rewiring. We found test code online as described in our results section that is 
used to verify that the Arduino is interacting properly with its NRF. After running the code, we 
found that the Uno was communicating properly with the chip, but the Nano was not 
outputting anything to the Serial monitor. 

5. Because of our suspicion of the Nano not outputting anything about the module, and after 
reading a few hundred more forum posts, we suspected that the problem was simply a 
matter of a faulty Arduino. We ended up rushing to procure another Arduino Uno, which 
finally fixed the problem. 

The issue of troubleshooting the wireless communication was a process that took several 
weeks of our time. Because of this, we unfortunately did not have much time to elaborate as much 
on the project as we would have liked to. 

Flex Sensors and MG996R 55g Micro Servos 

The Honors Lab inventory only had 2 flex sensors when we had searched around at the start 
of the semester. We ordered 3 more, but the order form was unfortunately either lost or didn't go 



through. In the end, we were forced to order the 3 other sensors once returning home from Spring 
break, causing our construction to be delayed by about two weeks. The servos gave us a similar 
problem; we had gotten the wrong king of servos from the lab inventory (9g instead of 55g). We also 
had to order those once we got home which contributed to the delay. 

3D printed Arm 

Though InMoov had provided the STL models for our arm to be 3d printed, the instructions 
he provided on his website for construction were vague at some parts and overly complex in others. 
Thus, most of the arms construction was improvised by us during assembly. As one may expect 
from an improvisatory wiring and assembly process, we encountered a multitude of small problems 
during construction. The tension required for each string was found entirely through trial and error, 
and at times it would take several hours to adjust one string correctly. There were many 3D-printed 
parts that were either slightly warped, had holes that were too small, or didn’t fit well together, which 
required sanding and drilling to fix. There were also several string breakages over the course of our 
assembly which required repeating things we had already done, making this a very arduous process 
at times. All of these issues, coupled with some more minor problems such as screws fitting or 
gluing errors, made assembly a very time consuming process. 

Future Plans 

There were a good number of aspects to this project that we could not complete due mostly 
to time constraints. In the future, we’re hoping to perhaps program in a functioning version of the 
rock-paper-scissors game onto the Arm-side Arduino. With that, we’d also need to actually create the 
glove controller itself by finding an efficient yet nice looking way to attach all of our circuitry to a 
reasonably sized glove. We may also look into replacing some of the rubber tubing we’d used as our 
elastic string with nylon, as the tensile strength of that material seems to be much greater than that 
of the rubber we’ve currently using. 
 

References 
[1]M. Kilic, "How to Make Wireless / Gesture Control Robotic Hand", Hackster.io, 2018. [Online]. 
Available: 
https://www.hackster.io/mertarduino/how-to-make-wireless-gesture-control-robotic-hand-cc7d07. 
[Accessed: 15- Feb- 2020]. 

[2]Gael Langevin, "Hand and Forearm", inmoov.fr, 2014. [Online]. Available: 
http://inmoov.fr/hand-and-forarm/ [Accessed: 11- April- 2020]. 

 

 

http://hackster.io/
https://www.hackster.io/mertarduino/how-to-make-wireless-gesture-control-robotic-hand-cc7d07
http://inmoov.fr/
http://inmoov.fr/hand-and-forarm/


 

 

 

Appendix 

[1] 

 

 

 

 

 

 

[2]  

 

 

 

 

 

 

[3]  

 

 

 

 

 



 

 

 

[4]  

 

 

 

 

 

 

 

[5]  

 

 

 

 

 

 

[6]   


