
Kevin Palani and Matthew Pham
ECE 120 Honors Lab
12/12/2018

Final Lab Report
Introduction

Problem Description
After seeing all the various ideas for the ECE 120 Honors Lab projects, we saw that there
was a common theme: dorm room automation. However, all the proposed ideas were
specific to an appliance (such as a light or curtain). Moreover, there was no standardized
way to operate and allow for the appliances to communicate. We decided to approach
dorm room automation with a more modular project that would be able to control all
appliances that were connected to a “hub” and decided to call it IoT SmartHub.

Design Concept
IoT SmartHub has a simple setup: a “hub” that a device that users want to control can
connect to, as well as a website with a portal to configure that device. For development
purposes, the website would be run on Cloud9, a server development platform, and
consist of a MySQL database that stores the user’s information and device ID’s, an
InfluxDB database that stores all statistics regarding the device’s performance, and 3
HTML pages. The website directly interacts with the ESP32, the central processor that
powers the “hub”. The first HTML page is the home page, where the user can see their
list of devices and easily change the devices’ states. There would also be links to proceed
to the other 2 web pages, the first being the “Settings” page for that device, which allows
the user to more specifically customize the device’s behavior. The other link would
proceed to the “Data” page for the device, which is a graph that displays all the statistics
of the device on an easy to read graph. For the hardware side, we would have a switch
that choose between 9V, 5V, and 3.3V. These signals would pass through a and gate to
give us an enable signal. The signals then switch the corresponding transistor, which
connects the power source the the correct voltage divider. This then connects to an H
bridge, which will allow us to have a forward and reverse control. Finally, the output gets
adjusted using another transistor and a pwm signal. In total, there would be 3 control
signals from the microcontroller to the rest of the hardware: enable, direction, and pwm.
A sensor would input into the microcontroller, and a switch and power source would
connect to the other parts of the hardware.

Analysis of Components
A potentiometer was used as a sample input, as we could easily set its value

without worrying about real world values. A DC motor would be our output, as it would
be able to show the different power levels, forward/reverse, and varying speeds

We believe the design was mostly good, other than the 2 issues of using bjts instead of
mosfets, and voltage dividers instead of voltage regulators.
Design Description

Block Diagram

Wiring

FSM

Conclusion

Lessons Learned
After working on the project, we discovered that our method for supplying power was not
the most optimal. Also, the wifi was shaky, which was probably related to not having
enough power.

Self-assessment
Unfortunately, we were not able to reach all the goals that we had set at the beginning of
the semester. On the software side of the project, we completed all requirements and were
happy with the outcome (a simplistic web interface that interacted with the ESP32 over
WiFi). The ESP32 was able to parse the settings and interpolate between different output
values, and properly set all the control signals. However, we encountered issues such as
bad WiFi connection during our demo, and not being able to supply enough power. We
learned that we should be using mosfets instead of bjts when we are driving outputs,
since the bjts could not provide enough current. We also learned that voltage dividers are
a bad way of converting voltages, and that we should have used a voltage regulator
instead. Next time, instead of treating power signals like a data pathway, I should
calculate the voltage and current drops at all points in the circuit to make sure everything
is properly being powered.

