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Final Report ECE 110 H 

Introduction 

Problem Description 

When playing trumpet (or any musical instrument for that matter), a key part in achieving 
mastery of the instrument is understanding intonation and especially tuning. While there are 
many methods of achieving correct tuning externally (ex: a tuner), one must find the ability to 
tune by ear. Since we as musicians are by no means masters of tuning, we decided to build a 
device that would allow us to train our tuning by ear, to further our musical ability. To achieve 
this, the device would need to react to the note the user is playing, and sustain the correct 
intended pitch.  
Design Concept 

This device will “listen” to the user play a note, and identify the frequency (pitch) of said 
note. Then, the device will check what “valves” (buttons) are pressed. We will define ranges of 
frequencies in which there is only one correct note corresponding to each valve combination. 
Therefore, the device will be able to identify the correct, intended note, as long as the user has 
the right valve combination (not usually an issue, especially for more advance musicians) and is 
playing a pitch fairly close to the correct one. Since the input and output sounds will be “the 
same” but slightly off, a dissonant waveform is audibly generated which the user can hear, and 
then adjust their playing accordingly. 
Analysis of Components 

Characterization of each sensor 

1. Pushbuttons 
As part of our inputs, we used normally open pushbutton switches. These switches 

essentially break the circuit when they are not pressed, allowing no current to flow through. For 
this project, we needed switches that would work with digital pins, meaning they could be 
grounded or powered at all times. We addressed this issue with the circuitry below, and will 
discuss later in our design considerations. 



 

  
Figure 1. Circuit diagram of switches 

2. SparkFun sound detector 
For this project, we used the SparkFun Sound Detector SEN-12642. This audio sensing 

board has three outputs: an audio output as well as a binary (gate) and analog amplitude 
(envelope) output.  

 
Figure 2. The output of the sound detector in response to sound pulses, retrieved from 

https://learn.sparkfun.com/tutorials/sound-detector-hookup-guide/all 
Initially, we tested each of these outputs with the oscilloscope to determine what data we 

could use. When we first characterized the audio output, we saw a rather messy signal on the 
oscilloscope. The microphone outputs through the audio pin a waveform resembling the 
waveform of the input sound. This means it will output a sum of the harmonics, resulting in a 
relatively dirty sinusoidal signal. Although the signal within each period is unclean, the 
frequency of the signal as a whole will be very close to the frequency of the dominant sound in 
the environment. The square wave we used as a reference translated very well in terms of 
frequency through the microphone. We did in fact observe the signal reacting to both increases in 



 

intensity (volume) of incoming sound and change in frequency. The amplitude and frequency of 
the signal both changed on the oscilloscope accordingly. Since the frequency was accurate, and 
most applicable to our project, we decided to use this output.  
Design Considerations 

One significant part of this project was creating a product that was somewhat user 
friendly, that somewhat felt like a trumpet and acted similar to it. After all, what good is a 
trumpet simulation that feels like an ECE project? For this, we placed our buttons a realistic 
distance away from the circuitry of our project, and made sure that the speaker was close to the 
user so they could hear it. In addition, we positioned the microphone and output in opposite 
direction so as to minimize feedback loops. This was not too big of an issue, especially since we 
discovered that the microphone only picks up fairly loud sound within a few centimeters. 

We modified the pushbutton switches to act as pseudo SPDT switches in that it causes 
the Arduino digital pin to swap between a grounded and a powered circuit (HIGH and LOW 
signals). We achieved this function by connecting the ground of the pushbutton to both the 
digital pin and a resistor connected to ground, as shown below. This was necessary because the 
digital pins on the Arduino must be grounded or powered at all times to ensure accurate readings, 
and avoid floating voltages. 

We decided to only use the AUDIO output from the SparkFun board because, as 
discussed before, we needed the frequency value of the incoming sound. The rest of the noise on 
top of the fundamental frequency made it difficult for the Arduino to find a steady, accurate 
pitch, and the final product still has some issues with maintaining a steady pitch. When deciding 
where to place the microphone on our project, we knew from testing that the microphone did not 
pick up sound accurately from more than a few centimeters away. Therefore we decided to place 
the sound detector chip as close as possible to where sound would be on this device, which is the 
mouthpiece of the instrument. 

We used the Arduino heavily in this project to help us analyze the inputs from the 
microphone. The analog pins were used as the input for the sound detector, and with it we could 
discern the frequency of the pitch that was being played. The digital pins were used to read the 
state of the pushbuttons. Most of this analysis was done in the code we created for this project. 
The starting point was to find existing code that could do the calculations required to derive the 
frequency from the voltage signal output by the audio pin. We found an open source code at 
https://www.instructables.com/id/Arduino-Frequency-Detection/ and from there further 
developed our code. We added variables for our digital inputs, the pushbuttons. Then, we broke 
the main code into two main operations: checking frequency and checking button states. The 
Arduino checked the incoming frequency first, and then identified which of our identified ranges 
it fell into. These ranges were low C to F, F# to B flat, and B to C (covering one full octave). The 
reason the ranges get smaller as one goes up the scale is due to the harmonics of the instrument, 
in that valve combinations start to repeat more quickly as notes get higher. After checking which 
of these ranges the played frequency fell into, the Arduino checked the buttons. Since each valve 



 

combination corresponds to exactly one note in each range, the output note was determined here 
and sent to the speaker. It should be noted, then, what the device does when the inputs do not 
match a note. First, if the frequency fell outside of our ranges (usually large spikes in frequency 
readings due to the instability of the microphone), the speaker stops playing so as to not confuse 
the user with wrong notes. In addition, if the frequency falls into a range but there is no note 
corresponding to the valves pressed, the speaker also stops playing. This would signal to the user 
that they are using the incorrect valves for that note.  

A small speaker was used as the final output of our device. Based on the reading of the 
sound detector and the combination of button/valves being activated, the Arduino would output 
the corresponding sound through the speaker, using the tone function.  
Design Description 

Block Diagram 

 



 

Circuit Schematics 

 
Pushbuttons: 

 
Above is the circuit schematic for one of our pushbuttons. The same circuitry was 

repeated for all three and connected to digital pins 6, 7, and 8, respectively. When the pushbutton 
is pressed, the digital pin of the arduino is connected to power (current takes the path with least 
resistance) and the pin reads a HIGH value. When the button is not pressed, the pin is connected 
to ground through the resistor and the pin reads LOW. 
Physical/Mechanical Construction: 



 

 
Our physical construction consisted of two main components: the breadboard with the Arduino 
and a small acrylic tube which held the buttons. The tube served as a mock instrument, giving 
the user something to hold while interacting with the switches. Using a soldering iron, small 
holes were burned through the acrylic, into which we attached the buttons. The wires that 
connected to the buttons were fed through the tube to be connected to the breadboard with the 
rest of the circuitry.  
Conclusion 

We took away many valuable lessons from this project. For one, none of us had coded 
with Arduino to this extent before, and learning what the board was really capable of doing will 
be helpful for future projects. One obstacle we did not foresee due to our inexperience was with 
the buttons: we bought SPST pushbuttons, not realizing that digital signals had to be powered or 
grounded at all times (avoiding floating voltages). However, we were able to fix that issue by 
applying things we had learned in our lab course. Also, it was pretty interesting that some of the 
most recent material we covered in ECE 110 (signal processing) related to our project (frequency 
from samples). We also got a very helpful review in how to solder components correctly.  

All in all, we were successful in creating a device that could read an input frequency and 
button combinations and analyze them together to create a useful output in developing pitch 
accuracy and musicianship. Further development could include a visual display (perhaps through 
LEDs or a light strip) that would display whether the input pitch was relatively flat, sharp, or 
correct. The ranges in our code could be expanded to include more octaves. More work could 
also be done on the coding aspect to make the input frequency reading more accurate and the 
output buzzer noise faster in responding to changes in the pitch or switch combination. We could 



 

also experiment with different types of sound detectors in order to get a more accurate, stable 
reading in frequency.  


