
HandsOn Music

Sabrina Moheydeen (sabrina7)

Elisabeth Martin (emm7)

ECE 110/120 Honors Project

HandsOn Music

Introduction

Problem Description

Our mutual interest in music and musical instruments motivated us to work on solving

the problem of the cost, size, and complexity of musical instruments. We believe it is important

for people to have easy access to music without needing to have large amounts of money or

space; in this way, more people will be able to express themselves through music. Our design,

HandsOn Music, must meet the constraints of portability, low cost, and ease of entrance for

beginners.

Design Concept

Our project is a modification of several other music projects that take inputs on a surface

that represents a keyboard to play music; however, our project incorporates both the movement

and keying combination and a teaching and learning mode that can teach beginners how to read

music and translate it to finger motions. Our system, HandsOn Music, incorporates gloves and

force sensitive resistors to play music according to finger movements. We also incorporate LEDs

in a tutorial mode to allow users to learn piano fingerings if they have limited experience with

the instrument, or provide a flashing display of color when not in tutorial mode (hereafter

referred to as free play mode). Our system receives inputs from the pressure on the force

sensitive resistors (FSRs) and push buttons. The push buttons interface with NAND gates to

determine if our system is in tutorial mode. If in tutorial mode, the Arduino signals on an LED

which finger is to be played, and the FSRs send signals to the analog inputs of the Arduino to

determine which note is played. When in free play mode, the FSRs send an input to the Arduino

which signals an LED to light up to display the note played. We use a speaker to play the

frequencies of various notes based on the user's motions.

Analysis of Components

Characterization of Each Sensor

To create our project, we used force sensitive resistors to detect when a key was played in

order to play the corresponding note in the free play mode or determine whether the correct note

has been played in the tutorial mode. The output values of these sensors increase when a force is

applied and they are pressed. To use these sensors in the Arduino code, we needed to find the

values of the sensors when they were pressed. Although we initially found that the sensors output

a value of 0 when not pressed and greater than 15 when pressed, after adding components to our

project, these values changed, and as a result, we needed to use a value of 300 or greater as the

value to detect an applied force.

We also used NAND gates in our project to switch into the tutorial mode. We initially

wanted to use two 7400 chips to turn on the tutorial when all five force sensors were pressed by

NANDing two sensors together and NANDing the output with itself, doing the same with two

other sensors, NANDing these two outputs together and inverting the output and NANDing this

output with the final sensor and inverting this output. However, we ran into several issues while

doing this and instead used two push buttons NANDed together and NANDed this output to send

into the Arduino so the tutorial mode would turn on when the buttons were pressed at the same

time.

Design Considerations

Before incorporating the FSR’s into our circuit, we experimented with them using an

ohmmeter and the Arduino readout. We determined that their resistances went extremely high

once their threshold was met. We determined the threshold of “off” vs. “on” as we needed for

our project by using the Arduino readout; we determined the force threshold value for our FSR’s

was around 300. We incorporated this value into our threshold for when the FSR’s would

register as pressed (“on”) and not pressed (“off”).

Design Description

Block Diagram

Inputs:

The input to our design was pressure to either the push buttons or the FSR’s. This

allowed our further logic gates and microcontroller to know whether the user had pressed

a finger to the surface or whether the user wanted to enter tutorial mode.

Logic and Processing:

The input of pressure to the push buttons was processed by the NAND gates

which signaled to the Arduino whether the system should enter tutorial mode.

Additionally, the Arduino microcontroller processed the input of pressure from the FSRs.

Outputs:

The LED’s and speaker were the visible and audible outputs of our device. When

in free play mode, the Arduino controlled the speaker and LED’s to output both a

flashing light and a tone for each input from the FSR (a finger pressed). When entering

tutorial mode, the output of the logic gates was sent into a digital pin of the Arduino,

which signaled the Arduino to cause all five LED’s to flash simultaneously. The Arduino

then controlled the LED’s to flash to the tune of Jingle Bells, waiting to play the next

note until the previous one was played.

Circuit Schematic

Note: FSR’s are represented as

Physical/Mechanical Construction

Our design was constructed on a breadboard during prototyping. We placed the FSRs in

the breadboard, along with the LED’s and related wiring and resistors. We connected the speaker

by the side of the breadboard.

Conclusion

Lessons Learned

One obstacle we encountered was the amount of time it took for our FSRs to arrive. Since

we needed to order them online, we did not receive them for several weeks and were unable to

begin building a prototype and testing our code until they arrived. This, along with the errors we

encountered when attempting to implement the NAND gates, prevented us from creating a fully

working glove, and we were only able to create a working prototype that was entirely connected

to a breadboard instead of soldered together on a glove. During this process, we learned how to

modify our ideas and goals in order to create a working design in the limited time we had left

once we received our sensors and resolved any bugs. Additionally, when testing our logic gates

and debugging our code in general, we learned that the Arduino serial monitor is incredibly

helpful for isolating specific problems and determining what the values of certain inputs and

variables are and whether these match the expected values.

Self-Assessment

Although we did not accomplish our initial goal of creating a fully working glove that

could play music, we were able to create a prototype that could be soldered together and made

into a glove, which we hope to complete in the future. Additionally, although we were not able to

add in all of the features we initially wanted to, such as the ability to change octaves, we were

able to create a working design that could play notes based on finger motions and incorporated

the tutorial mode we had envisioned. In all, we are pleased with the progress we have made in

developing a working prototype of our design and hope to expand upon this project to

encompass more features in the future.

References

[1]"Piano TouchSense Glove", Instructables.com, 2018. [Online]. Available:

https://www.instructables.com/id/Piano-TouchSense-Glove/. [Accessed: 22- Sep- 2018].

[2]"Scott Made This | Piano Gloves", Scott.j38.net, 2018. [Online]. Available:

http://scott.j38.net/interactive/piano_gloves/. [Accessed: 22- Sep- 2018].

[3]S. Carroll and J. Talmage, "ECE 4760 Final Project: Piano Gloves", People.ece.cornell.edu,

2018. [Online]. Available:

https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/f2015/swc63_ncm42_jmt329/s

wc63_ncm42_jmt329/webpage/index.html. [Accessed: 22- Sep- 2018].

[5] D. Ben Chan (Benechan) and V. profile, "Simple 5 finger Piano Songs - Easy Tunes for

complete beginners", Pianosage.blogspot.com, 2018. [Online]. Available:

http://pianosage.blogspot.com/2011/11/simple-5-finger-piano-songs- for.html. [Accessed: 15-

Dec- 2018].

[6] "Play Sound on Pc With Arduino and Progduino", Instructables.com, 2018. [Online].

Available: https://www.instructables.com/id/play-sound-on-pc-with- arduino-and-progduino/.

[Accessed: 15- Dec- 2018].

[7] S. Mullett, "Jingle Bells Very Easy Piano Sheet Music - Let's Play Music", Let's Play Music,

2018. [Online]. Available: https://www.letsplaykidsmusic.com/ jingle-bells-very-easy-piano-

sheet-music/. [Accessed: 15- Dec- 2018].

Appendix 1: Arduino Code

 #define NOTE_C4 262

 #define NOTE_D4 294

 #define NOTE_E4 330

 #define NOTE_F4 349

 #define NOTE_G4 392

 int buzzer = 7;

 int gates = 8;

 int led1 = 2;

 int led2 = 3;

 int led3 = 4;

 int led4 = 5;

 int led5 = 6;

 int fsr1Pin = 1;

 int fsr1Reading = analogRead(fsr1Pin);

 int fsr2Pin = 2;

 int fsr2Reading = analogRead(fsr1Pin);

 int fsr3Pin = 3;

 int fsr3Reading = analogRead(fsr1Pin);

 int fsr4Pin = 4;

 int fsr4Reading = analogRead(fsr1Pin);

 int fsr5Pin = 5;

 int fsr5Reading = analogRead(fsr1Pin);

 int fsrs[] =

 {

 0, fsr1Reading, fsr2Reading, fsr3Reading, fsr4Reading, fsr5Reading

 };

 int song1Notes[] =

 {

 NOTE_E4, NOTE_E4, NOTE_E4, NOTE_E4, NOTE_E4, NOTE_E4, NOTE_E4,

NOTE_G4, NOTE_C4, NOTE_D4, NOTE_E4, NOTE_F4, NOTE_F4, NOTE_F4, NOTE_F4,

NOTE_F4, NOTE_E4, NOTE_E4, NOTE_E4, NOTE_E4, NOTE_E4, NOTE_D4, NOTE_D4,

NOTE_E4, NOTE_D4, NOTE_G4,

 NOTE_E4, NOTE_E4, NOTE_E4, NOTE_E4, NOTE_E4, NOTE_E4, NOTE_E4,

NOTE_G4, NOTE_C4, NOTE_D4, NOTE_E4, NOTE_F4, NOTE_F4, NOTE_F4, NOTE_F4,

NOTE_F4, NOTE_E4, NOTE_E4, NOTE_E4, NOTE_E4, NOTE_G4, NOTE_G4, NOTE_F4,

NOTE_D4, NOTE_C4

 };

 int song1Durations[] =

 {

 4, 4, 2, 4, 4, 2, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4, 8, 8, 4, 4, 4, 4, 2, 4,

 4, 4, 2, 4, 4, 2, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 4, 4, 4, 4, 1

 };

 int song1LEDs[] =

 {

 led3, led3, led3, led3, led3, led3, led3, led5, led1, led2, led3, led4, led4, led4, led4, led4,

led3, led3, led3, led3, led3, led2, led2, led3, led2, led5,

 led3, led3, led3, led3, led3, led3, led3, led5, led1, led2, led3, led4, led4, led4, led4, led4,

led3, led3, led3, led3, led5, led5, led4, led2, led1

 };

 int song1Nums[] =

 {

 3, 3, 3, 3, 3, 3, 3, 5, 1, 2, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 3, 2, 5,

 3, 3, 3, 3, 3, 3, 3, 5, 1, 2, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 5, 5, 4, 2, 1

 };

void setup() {

 // put your setup code here, to run once:

 pinMode(led1, OUTPUT);

 pinMode(led2, OUTPUT);

 pinMode(led3, OUTPUT);

 pinMode(led4, OUTPUT);

 pinMode(led5, OUTPUT);

 pinMode(buzzer, OUTPUT);

 pinMode(gates, INPUT_PULLUP);

 Serial.begin(9600);

}

void loop() {

 // put your main code here, to run repeatedly:

 fsrs[1] = analogRead(fsr1Pin);

 fsrs[2] = analogRead(fsr2Pin);

 fsrs[3] = analogRead(fsr3Pin);

 fsrs[4] = analogRead(fsr4Pin);

 fsrs[5] = analogRead(fsr5Pin);

 int tutorial = digitalRead(gates);

 Serial.println(tutorial);

 if (fsrs[1] > 400 && tutorial == 1)

 {

 tone(buzzer, NOTE_C4, 1000/4);

 digitalWrite(led1, HIGH);

 delay(250);

 digitalWrite(led1, LOW);

 }

 else if (fsrs[2] > 400 && tutorial == 1)

 {

 tone(buzzer, NOTE_D4, 1000/4);

 digitalWrite(led2, HIGH);

 delay(250);

 digitalWrite(led2, LOW);

 }

 else if (fsrs[3] > 400 && tutorial == 1)

 {

 tone(buzzer, NOTE_E4, 1000/4);

 digitalWrite(led3, HIGH);

 delay(250);

 digitalWrite(led3, LOW);

 }

 else if (fsrs[4] > 400 && tutorial == 1)

 {

 tone(buzzer, NOTE_F4, 1000/4);

 digitalWrite(led4, HIGH);

 delay(250);

 digitalWrite(led4, LOW);

 }

 else if (fsrs[5] > 400 && tutorial == 1)

 {

 tone(buzzer, NOTE_G4, 1000/4);

 digitalWrite(led5, HIGH);

 delay(250);

 digitalWrite(led5, LOW);

 }

 if (tutorial == 0)

 {

 Serial.println(tutorial);

 digitalWrite(led1, HIGH);

 digitalWrite(led2, HIGH);

 digitalWrite(led3, HIGH);

 digitalWrite(led4, HIGH);

 digitalWrite(led5, HIGH);

 delay(1000);

 digitalWrite(led1, LOW);

 digitalWrite(led2, LOW);

 digitalWrite(led3, LOW);

 digitalWrite(led4, LOW);

 digitalWrite(led5, LOW);

 delay(1000);

 int wait = 1;

 for (int currentNote = 0; currentNote < 51; currentNote++)

 {

 delay(250);

 digitalWrite(song1LEDs[currentNote], HIGH);

 delay(250);

 while (wait == 1)

 {

 fsrs[1] = analogRead(fsr1Pin);

 fsrs[2] = analogRead(fsr2Pin);

 fsrs[3] = analogRead(fsr3Pin);

 fsrs[4] = analogRead(fsr4Pin);

 fsrs[5] = analogRead(fsr5Pin);

 if (fsrs[song1Nums[currentNote]] > 400)

 {

 int noteDuration = 1000 / song1Durations[currentNote];

 int note = song1Notes[currentNote];

 tone(buzzer, note, noteDuration);

 digitalWrite(led1, LOW);

 digitalWrite(led2, LOW);

 digitalWrite(led3, LOW);

 digitalWrite(led4, LOW);

 digitalWrite(led5, LOW);

 wait = 0;

 }

 }

 wait = 1;

 }

 digitalWrite(led1, HIGH);

 digitalWrite(led2, HIGH);

 digitalWrite(led3, HIGH);

 digitalWrite(led4, HIGH);

 digitalWrite(led5, HIGH);

 delay(1000);

 digitalWrite(led1, LOW);

 digitalWrite(led2, LOW);

 digitalWrite(led3, LOW);

 digitalWrite(led4, LOW);

 digitalWrite(led5, LOW);

 delay(1000);

 }

}

