
IoT Integrated Smart Home
Project Final Report

Justin Yang justiny2
Advaith Ravikumar advaith2

Xutao (Jumbo) Jiang xutaoj2

ECE 110/120 Honors Lab
May 8, 2017

1 Introduction

1.1 Statement of Purpose
Our project is a smart home security system that helps notify you of unwanted activity
around the valuables in your home. Many people have important things to keep care of, so
this smart security system helps them to ensure that their items aren’t stolen or tampered
with while they are away outside the room or home. This project was inspired, in part,
by the high tech security systems that might be seen in movies, especially the laser security
system. With that in mind, we set out to build a security system that could have cool-looking
functionalities while at the same time being something that could be easily used in one’s
day-to-day life. We also wanted our project to be connected, so a user could check in on the
status of their home in a couple of clicks from their phone or computer.

Our project consists of IR emitter–detector pairs which detect when something is blocking
their line of sight, a trip laser which changes a photoresistor’s operating point when blocked,
and a temperature sensor. The system uses a RedBoard microcontroller to monitor the
conditions of the sensors. When activity is detected, signals are sent from a Bluetooth
module to a smartphone, where the app allows you to view alerts and system conditions.

1.2 Features and Benefits
Since the system has each component connected individually to the Arduino microcontroller
and Bluetooth module, then the app is able to display individual information about the
condition of each component. For instance, if the alarm goes off, you could see which one
of the components had an issue from the app. The system is also very sensitive, so it can
detect changes for a short period of time. For instance, it could detect your slow moving
turtle blocking the sensor, or your very agile cat.

The app displays information about whether each of the sensors is blocked, and what the
current reading of the temperature sensor is. The app also displays information about the
overall health of the system, which is determined by the AND gate logic.

1

2 Design

2.1 System Overview

Figure 1: Complete block diagram

2.2 Design Details
2.2.1 IR sensors

We got two IR sensors, each has one emitter and one receiver set side by side, to detect the
movement of the door. The receiver will change resistance while irradiated with infrared
light. We put power to both of them using analog input to detect the voltage, and set a
threshold to make a 0/1 signal to indicate whether the infrared light is blocked or not.

2.2.2 AND gate

The AND gate is a digital logic control for the IR sensors. In our design, we used the quad
two-input AND gate (SN74S08). Digital inputs to the AND gate represent the status of
each of the IR sensor pairs. A digital high means that the system is good; a digital low is
presented when an object is blocking the path between the IR detector and emitter. Hence,
the two-input AND gate will yield a 1 when both IR sensors are unobstructed.

2.2.3 Photoresistor

This gadget will change resistance according to the light intensity of the side that it is facing.
We also use analog input to receive signal, and we set it to a relatively high threshold so
that only the laser beam could make the feedback above the threshold, while the room light
won’t, thus allowing absence of the laser to trigger the alarm.

2.2.4 Temperature Sensor MCP9808

This breakout chip could detect temperature and send back digital signal using I2C protocol.
It is decent. But the library code Adafruit provides will stop the whole program if the sensor

2

is not detected.

2.2.5 Simblee Bluetooth Module

It needs to be hooked up to a separate programming header module so that we could connect
it to the computer and program on it. It is quite easy after we figure out how it works. We
could use the same IDE as the Arduino, while selecting Simblee as construction mode after
downloading the required files. One of the problems we had was using sprintf on the decimal
float value of the temperate we acquired from the Arduino, but after a lot of debugging, we
figured out that we could use %d.%d to get around the trouble. Also, we have to use the app
of Simbee to connect to the module, and the app development is kind of limited.

2.2.6 Simblee for Mobile

The smartphone app and Arduino library that we have to use to connect to the Bluetooth
module. The Arduino library has decent functionality, but the documentation is not written
very well. After a while, however, we were able to find the source files for the library which
allowed us to find out how to create UI objects such as text boxes and colorful rectangles.

3 Results

3.1 Characterization of Sensors
IR Sensors – Range ~3 cm
LDR – Darkness – 0.40 MΩ

With Laser – 200 Ω
Bluetooth Module – Range ~5 m (straight line)

4 Problems and Challenges
The main problem that we faced was in getting our Bluetooth module to work correctly.
At first, we had a few issues finding pins to solder it nicely, then found out that we needed
another adaptor board. After this, getting the data to display perfectly was a bit of a
struggle. The phone app wasn’t updating the temperature and kept crashing. Eventually
we were able to get it to update and print the correct values by changing the data type
in our sprintf statement from float to two integers manually separated by a decimal sign.
Calibrating the sensors was another smaller problem. During transportation, several wires
had come loose and needed to be reconnected. Moreover, moving the IR emitter–receiver
even one row on the breadboard required recalibration of the threshold signals in the arduino
code. The LDR also had to be configured to the right level so as to differentiate between the
laser and ambient lighting. Moreover, the responsiveness of this subcircuit was initially low,
which was fixed by reducing the delay in all other parts of the code. More information is now
passed through the circuit and Bluetooth module due to lesser delays, but the sensitivity of
the entire security system increased which is more important in practical usage.

3

5 Future Plans
We would definitely like to implement our project in real world scenarios. To do this, we
need to give more control in the other direction, i.e., from the phone to the IoT system.
This would entail lights to turn on/off with the push of a button, or be able to toggle your
thermostat at home and have the temperature actually change. Our Bluetooth range was
acceptable for our small scale model, but we would need to extend this to Wi-Fi if this
project is to be taken further. We also want to configure the system to send a text message
to your phone when the alarm goes off.

6 References
[1]“sprintf - C++ Reference”, Cplusplus.com, 2017. [Online]. Available:

http://www.cplusplus.com/reference/cstdio/sprintf/. [Accessed: 08- May- 2017].

[2]“C library function sprintf()”, www.tutorialspoint.com, 2017. [Online]. Available:
https://www.tutorialspoint.com/c_standard_library/c_function_sprintf.htm. [Accessed:
08- May- 2017].

[3]“Simblee”, Simblee.com, 2017. [Online]. Available: https://www.simblee.com/. [Accessed:
08- May- 2017].

[4]“Simblee BLE - SparkFun Electronics”, Sparkfun.com, 2017. [Online]. Available:
https://www.sparkfun.com/simblee. [Accessed: 08- May- 2017].

[5]C. Willenborg, “PCB info”, 2016. [Online]. Available:
https://docs.google.com/document/d/1igjXyXyJiLFourtGIShI42v7llou9brmnvKJY4AG5do/.
[Accessed: 08- May- 2017].

[6]“SparkFun Simblee BLE Breakout - RFD77101 - WRL-13632 - SparkFun Electronics”,
Sparkfun.com, 2017. [Online]. Available: https://www.sparkfun.com/products/13632.
[Accessed: 08- May- 2017].

[7]“SparkFun USB to Serial Breakout - FT232RL - BOB-12731 - SparkFun Electronics”,
Sparkfun.com, 2017. [Online]. Available: https://www.sparkfun.com/products/12731/.
[Accessed: 08- May- 2017].

[8]2017. [Online]. Available:
https://cdn.sparkfun.com/datasheets/IoT/Simblee%20RFD77101%20Datasheet%20v1.0.pdf.
[Accessed: 08- May- 2017].

[9]“sparkfun/SparkFun_Simblee_Breakout_Board”, GitHub, 2017. [Online]. Available:
https://github.com/sparkfun/SparkFun_Simblee_Breakout_Board. [Accessed: 08-
May- 2017].

4

[10]2017. [Online]. Available:
https://cdn.sparkfun.com/datasheets/IoT/Simblee%20User%20Guide%20v2.05.pdf. [Accessed:
08- May- 2017].

[11]“sparkfun/Simblee_Tutorials”, GitHub, 2017. [Online]. Available:
https://github.com/sparkfun/Simblee_Tutorials. [Accessed: 08- May- 2017].

7 Code Appendix
Arduino_Security.ino

1 #include <Wire.h>
2 #include "Adafruit_MCP9808.h"
3

4 #define Laser A0
5 #define GreenLed A1
6 #define BlueLed A2
7 #define ANDOut 9
8 #define digiOut1 10
9 #define digiOut2 11

10 #define LaserLED 12
11 #define digiOut0 12
12 // Create the MCP9808 temperature sensor object
13 Adafruit_MCP9808 tempsensor = Adafruit_MCP9808();
14

15 void setup() {
16 // put your setup code here, to run once:
17 Serial.begin(9600);
18 pinMode(digiOut1,OUTPUT);
19 pinMode(digiOut2,OUTPUT);
20 pinMode(ANDOut, INPUT);
21 pinMode(digiOut0,OUTPUT);
22 pinMode(LaserLED,OUTPUT);
23 // Make sure the sensor is found, you can also pass in a

different i2c↪→

24 // address with tempsensor.begin(0x19) for example
25 if (!tempsensor.begin()) {
26 Serial.println("Couldn’t find MCP9808!");
27 while (1);
28 }
29 }
30

31 int BlueRead,GreenRead, Out, LaserRead;
32 int PWMsig;

5

33 void loop() {
34 // Temp Sensor
35 // Serial.println("wake up MCP9808.... "); // wake up MSP9808 -

power consumption ~200 mikro Ampere↪→

36 // tempsensor.wake(); // wake up, ready to read!
37

38 // Read and print out the temperature, then convert to *F
39 float c = tempsensor.readTempC();
40 float f = c * 9.0 / 5.0 + 32;
41 // Serial.println("Temp: "); Serial.print(c);

Serial.print("*C\t");↪→

42 // Serial.print(f); Serial.println("*F");
43

44 PWMsig = (int)(c*10*(255.0/1000.0));
45 analogWrite(3,PWMsig);
46 // Serial.println(PWMsig);
47 // Serial.println("Shutdown MCP9808.... ");
48 // tempsensor.shutdown(); // shutdown MSP9808 - power

consumption ~0.1 mikro Ampere↪→

49

50 delay(10);
51

52 //Door IR Sensor Code
53 BlueRead=analogRead(BlueLed);
54 GreenRead=analogRead(GreenLed);
55 delay(10);
56 if(GreenRead > 370) {
57 digitalWrite(digiOut1,HIGH);
58 }
59 else {
60 digitalWrite(digiOut1, LOW);
61 }
62 // Serial.println(BlueRead);
63 if (BlueRead>545) {
64 digitalWrite(digiOut2, HIGH);
65 }
66 else {
67 digitalWrite(digiOut2, LOW);
68 }
69 Out = digitalRead(ANDOut);
70 // Serial.println(Out);
71

72 //Laser Code
73 LaserRead=analogRead(Laser);
74 Serial.println(LaserRead);

6

75 if(LaserRead>900){//should be 900
76 //lights are on
77 digitalWrite(digiOut0, LOW);
78 digitalWrite(LaserLED, LOW);
79 }
80 else{
81 digitalWrite(digiOut0, HIGH);
82 digitalWrite(LaserLED, HIGH);
83 }
84 }

Security_System.ino

1 // Modified from Sparkfun Simblee Tutorials
2 // https://github.com/sparkfun/Simblee_Tutorials
3

4 // To use the SimbleeForMobile library, you must include this
file at the top↪→

5 // of your sketch. **DO NOT** include the SimbleeBLE.h file, as
it will cause↪→

6 // the library to silently break.
7 #include <SimbleeForMobile.h>
8 #include <Wire.h>
9

10 #define analogPin 11
11 #define diginput 12
12

13 const int led = 2; // The Simblee BOB (WRL-13632) has an LED on
pin 2.↪→

14 int ledState = LOW;
15

16 // uint8_t object ids
17

18 uint8_t btnID;
19 uint8_t switchID;
20 uint8_t textID;
21

22 uint8_t boxID;
23 uint8_t boxIR;
24 uint8_t boxLED;
25

26 const int btn = 9; // The Simblee BOB (WRL-13632) has a button on
pin 3.↪→

27

28 double frequency;
29

7

30 char buf[9];
31 int counter;
32

33 void setup()
34 {
35 pinMode(diginput, INPUT);
36 counter = 0;
37

38 Wire.beginOnPins(12, 15);
39

40 pinMode(led, OUTPUT);
41 pinMode(analogPin, INPUT);
42 digitalWrite(led, ledState);
43

44 // Protip: using INPUT_PULLUP very rarely causes any problems
but can solve↪→

45 // a lot of problems with input signals that aren’t pulled
strongly.↪→

46 pinMode(btn, INPUT_PULLUP);
47

48 // advertisementData shows up in the app as a line under
deviceName. Note↪→

49 // that the length of these two fields combined must be less
than 16↪→

50 // characters!
51 SimbleeForMobile.deviceName = "Meme";
52 SimbleeForMobile.advertisementData = "Security";
53

54 // txPowerLevel can be any multiple of 4 between -20 and +4,
inclusive. The↪→

55 // default value is +4; at -20 range is only a few feet.
56 SimbleeForMobile.txPowerLevel = -4;
57

58 // This must be called *after* you’ve set up the variables
above, as those↪→

59 // variables are only written during this function and changing
them later↪→

60 // won’t actually propagate the settings to the device.
61 SimbleeForMobile.begin();
62 Serial.begin(9600);
63 Serial.println(btn);
64 // buf[2] = ’.’;
65 // buf[5] = 0;
66 }
67

8

68 void loop()
69 {
70 bool laser_alert = digitalRead(diginput);
71 Serial.println(laser_alert);
72 double onTime = pulseIn(analogPin, HIGH);
73 frequency = onTime / 32.;
74 frequency = 1.58231*frequency + 1.20509;
75 int freq = frequency;
76 int frac = ((int) (frequency * 100)) % 100;
77 Serial.println(sprintf(buf, "%d.%02d oC", freq, frac));
78 buf[6] = 176;
79 //Serial.print("Frequency: ");
80 //Serial.println(frequency);
81 //Serial.print("buf: ");
82 //Serial.println(buf);
83 //Serial.println(1.58231*frequency + 1.20509);
84 // All we want to do is detect when the button is pressed and

make the box on↪→

85 // the screen white while it’s pressed.
86

87 // This is important: before writing *any* UI element, make
sure that the UI↪→

88 // is updatable!!! Failure to do so may crash your whole
program.↪→

89 if (SimbleeForMobile.updatable)
90 {
91 // Okay, *now* we can worry about what the button is doing.

The↪→

92 // updateColor() function takes the id returned when we
created the box and↪→

93 // tells that object to change to the color parameter passed.
94 if (digitalRead(btn) && !laser_alert)

SimbleeForMobile.updateColor(boxID, BLACK);↪→

95 else {
96 Serial.println("angery");

SimbleeForMobile.updateColor(boxID, RED);↪→

97 }
98 if (digitalRead(btn)) {
99 SimbleeForMobile.updateColor(boxIR, GREEN);

100 }
101 else {
102 SimbleeForMobile.updateColor(boxIR, BLACK);
103 }
104 if (!laser_alert) {
105 SimbleeForMobile.updateColor(boxLED, GREEN);

9

106 }
107 else {
108 SimbleeForMobile.updateColor(boxLED, BLACK);
109 }
110

111

112 counter++;
113 if (counter > 25) {
114 SimbleeForMobile.updateText(textID, buf);
115 counter = 0;
116 }
117

118

119 }
120 else { Serial.println("SAD!"); }
121 // This function must be called regularly to process UI events.
122 SimbleeForMobile.process();
123

124 //delay(1000);
125 //fflush(buf);
126 }
127

128 // (15.55, 25.81), (19.62, 32.25)
129

130 // ui() is a SimbleeForMobile specific function which handles the
specification↪→

131 // of the GUI on the mobile device the Simblee connects to.
132 void ui()
133 {
134 // color_t is a special type which contains red, green, blue,

and alpha↪→

135 // (transparency) information packed into a 32-bit value. The
functions rgb()↪→

136 // and rgba() can be used to create a packed value.
137 color_t darkgray = rgb(85,85,85);
138

139 // These variable names are long...let’s shorten them. They
allow us to make↪→

140 // an interface that scales and scoots appropriately regardless
of the screen↪→

141 // orientation or resolution.
142 uint16_t wid = SimbleeForMobile.screenWidth;
143 uint16_t hgt = SimbleeForMobile.screenHeight;
144

10

145 // The beginScreen() function both sets the background color
and serves as a↪→

146 // notification that the host should try to cache the UI
functions which come↪→

147 // between this call and the subsequent endScreen() call.
148 SimbleeForMobile.beginScreen(darkgray);
149

150 // SimbleeForMobile doesn’t really have an kind of indicator-
but there IS a↪→

151 // drawRect() function, and we can freely change the color of
the rectangle↪→

152 // after drawing it! The x,y coordinates are of the upper left
hand corner.↪→

153 // If you pass a second color parameter, you’ll get a fade from
top to bottom↪→

154 // and you’ll need to update *both* colors to get the whole box
to change.↪→

155 boxID = SimbleeForMobile.drawRect(0, 0, wid, hgt, BLACK);
156 // boxID = SimbleeForMobile.drawRect(
157 // (wid/2) - 50, // x position
158 // (hgt/2) + 75, // y positon
159 // 1000, // x dimension
160 // 1000, // y

dimensionrectangle↪→

161 // BLACK); // color of
rectangle.↪→

162

163 SimbleeForMobile.drawText((wid/2) - 75, (hgt/2) - 125, "IR",
WHITE, 30);↪→

164 boxIR = SimbleeForMobile.drawRect(
165 (wid/2) - 75, // x position
166 (hgt/2) - 75, // y positon
167 25, // x dimension
168 25, // y

dimensionrectangle↪→

169 BLACK); // color of
rectangle.↪→

170

171 SimbleeForMobile.drawText((wid/2) + 40, (hgt/2) - 125, "LED",
WHITE, 30);↪→

172 boxLED = SimbleeForMobile.drawRect(
173 (wid/2) + 50, // x position
174 (hgt/2) - 75, // y positon
175 25, // x dimension

11

176 25, // y
dimensionrectangle↪→

177 BLACK); // color of
rectangle.↪→

178

179 // Create a button slightly more than halfway down the screen,
100 pixels↪→

180 // wide, in the middle of the screen. The last two parameters
are optional;↪→

181 // see the tutorial for more information about choices for
them. The BOX_TYPE↪→

182 // button has a bounding box which is roughly 38 pixels high by
whatever the↪→

183 // third parameter defines as the width.
184 btnID = SimbleeForMobile.drawButton(
185 (wid/2) - 75, // x

location↪→

186 (hgt/2) - 22 + 150, // y
location↪→

187 150, // width of
button↪→

188 "Reverse LED", // text
shown on button↪→

189 WHITE, // color of
button↪→

190 BOX_TYPE); // type of
button↪→

191

192 // Buttons, by default, produce only EVENT_PRESS type events.
We want to also↪→

193 // do something when the user releases the button, so we need
to invoke the↪→

194 // setEvents() function. Note that, even though EVENT_PRESS is
default, we↪→

195 // need to include it in setEvents() to avoid accidentally
disabling it.↪→

196 SimbleeForMobile.setEvents(btnID, EVENT_PRESS | EVENT_RELEASE);
197

198 // Create a switch above the button. Note the lack of a title
option; if you↪→

199 // want to label a switch, you’ll need to create a textBox
object separately.↪→

200 // A switch’s bounding box is roughly 50 by 30 pixels.
201 switchID = SimbleeForMobile.drawSwitch(

12

202 (wid/2) - 25, // x
location↪→

203 (hgt/2)+22 + 150, // y
location↪→

204 BLUE); // color
(optional)↪→

205

206 SimbleeForMobile.drawText(wid/2-125, 50, "IoT Security
System!", WHITE, 30);↪→

207

208 textID = SimbleeForMobile.drawText(wid/2-65, hgt/2, buf, WHITE,
45);↪→

209 //textID = SimbleeForMobile.drawText(wid/2-45, hgt/2-250,
1.58231*frequency + 1.20509, WHITE, 45);↪→

210

211 SimbleeForMobile.endScreen();
212 }
213

214 // This function is called whenever a UI event occurs. Events are
fairly easy↪→

215 // to predict; for instance, touching a button produces a
"PRESS_EVENT" event.↪→

216 // UI elements have default event generation settings that match
their expected↪→

217 // behavior, so you’ll only rarely have to change them.
218 void ui_event(event_t &event)
219 {
220 // We created the btnID and switchID variables as globals, set

them in the↪→

221 // ui() function, and we’ll use them here.
222

223

224 if (event.id == btnID)
225 {
226 if (event.type == EVENT_PRESS)
227 {
228 if (ledState == HIGH) digitalWrite(led, LOW);
229 else digitalWrite(led, HIGH);
230 }
231 if (event.type == EVENT_RELEASE)
232 {
233 if (ledState == HIGH) digitalWrite(led, HIGH);
234 else digitalWrite(led, LOW);
235 }
236 }

13

237

238 // If the event was a switch press, we want to toggle the
ledState variable↪→

239 // and then write it to the pin.
240 if (event.id == switchID)
241 {
242 if (ledState == HIGH) ledState = LOW;
243 else ledState = HIGH;
244 digitalWrite(led, ledState);
245 }
246 }

14

	Introduction
	Statement of Purpose
	Features and Benefits

	Design
	System Overview
	Design Details
	IR sensors
	AND gate
	Photoresistor
	Temperature Sensor MCP9808
	Simblee Bluetooth Module
	Simblee for Mobile

	Results
	Characterization of Sensors

	Problems and Challenges
	Future Plans
	References
	Code Appendix

