
Speech Controlled Motor Cart
Fengmao Zheng,​ fengmao2,​ ECE 110

Wenxian Zhang,​ wzhan103,​ ECE 120

Introduction

a. Statement of Purpose

Our purpose of project is to make a sound driven motor that can follow the audio instruction to
move in expected direction. For this purpose, our design has two main components: a sound
converter that receives audio instructions and transfers the sound to electric signals and
instruction information and a motor that will receive the instruction from sound converter and
follow this instruction to move (forward, back, left and right).

All the major tech companies — Apple, Google, Microsoft, and Amazon, etc.— are pouring
incredible amount of resources into their new voice assistants, such as Siri or Alexa. The grant
amount of resource resulted a huge wave of obsession with using oral voice command to
electronic devices. According to Business Insiders, only 2% of iPhone owners have never used
Siri. [1] Sound recognition now becomes a project that is necessary in an electronic device; and
these projects inspired our ideas. However, Despite the popularity, lots of people do not use
sound recognition system maybe because of embarrassment in speaking to their device,
unfamiliarity of the command, or the belief that button or password control is good enough for
their lives. In order to solve these difficulties that users faced, we do not only aim to use sound
recognition in software or virtual system, but also aim to utilize it on a more regular basis, such
as using oral command to lock a bike or to drive remote controlled cars.

We want to make a thing that will follow instructions by sound which is the most convenient. In
order to accomplish this project, we do research about similar projects and how they have been
made.

b. Features and Benefits

Password Recognition: This device is able to set a five digit password in combination of 0s and
1s. This feature strengthen the security of the speech controlled car.

Speaker Recognition: This device will recognize specific speaker and only listen to the
instructions given by that speaker. This is designed by recording the acoustic feature from the
speaker and verify these features in the audio command.

Design

a. System Overview

The system has three sections: Voice Recorders, Voice Analyzer and Motor. Voice Recorders
will send the sound wave recorded from the environment to the Analyzer. The Analyzer will first
amplify the sound wave and then compare to the sample sound wave and send signal to the
motors with the angle, rate and direction of rotation. There are two key components in voice
recognition: Speech Recognition and Speaker Recognition. Only if the sound wave produced
match the phrase and the acoustic feature of the person, and the logical gates pass the key(which
is 1 0 0) the circuit will send 1 to drive the motor; otherwise the circuit will send 0 to the motor
which won't drive the motor. As for the past of logical gate, we have a swipe with a sequence of
"1" and "0" so that there will be a password in combination of "1"s and "0"s. The password is 1 0
0. Only when the password is correct, we will output "1" that we can open a part of the key.
After the system obtains and verify the voice input, the power supply will input “1” , open the
second part of the key and give out a signal with exact "lock" or "unlock" command as
programmed.

 b. Design Details

Password Key Truth Table:

This is the truth table for password input. We set the key as 1 0 0 and if the switch is on 100,
which means A = 1, B = 0, C = 0, the current will flow. If not, the current will not from the
power supply because of the block of logical gates. In the part of the key design, we use three
inputs ABC matched with S0,S1,S2 in the DIP switch. Only when F(output) = AB’C’, the output
will be 1 and the current will flow. And we use De Morgan’s law to achieve this design with
inverter, NAND and NOR gate.

For motor driving circuit, we used arduino redboard as a PMW power source and connected the
power source to the motor via a BJT transistor.

Results

For the device we had a microphone as signal input. We performed multiple tests on the device.
First time with a green LED light on pin 9 and a red LED light on pin 11. We designed a simple
command to turn the green light on and off and then turn the red light on and off. We
successfully demonstrated on the first demo day with 2 or 3 tries on each command. After we
built the final prototype for the motor cart, we tested it many times with the original microphone.
It had a success rate at about 40%. However, we thought that the original microphone is too
closely attached to the cart, so we decided to extend the wire by ironing an extension cord onto
the original microphone. The result is disastrous. The new microphone had an success rate of
lower than 10% and it broke many times that finally yielded us to use new microphone which
decreased the success rate even more.

Problems and Challenges

 a, Problems:

When connecting the shield to PC, PC won't recognize the port COM 3 and keeps asking for
bridge program update while the bridge program has updated to the latest version.

Need to learn which port on the shield needs to connect to the breadboard and the schematics of
the shield.

Need a very sensitive microphone in order to better recognize the input.

b. Challenges

a.) People may feel embarrassed using sound system in public.

b.) Applying these motors on vehicles may need a lot of budgets supported.

c.) Have to use a wireless microphone instead of speaking to a wired microphone.

References

1.​ K. Leswing, "Here’s why people don’t use Siri regularly, even though 98% of iPhone users
have tried it," in ​Business Insider​ , Business Insider, 2016. [Online]. Available:

http://www.businessinsider.com/98-of-iphone-users-have-tried-siri-but-most-dont-use-it-regularl
y-2016-6​. Accessed: Sep. 19, 2016.

2.​ B. Clark, "Study: Most iPhone owners are too embarrassed to use Siri in public," The Next
Web, 2016. [Online].
Available:​http://thenextweb.com/insider/2016/06/06/study-most-iphone-owners-are-too-embarra
ssed-to-use-siri-in-public/#gref​. Accessed: Sep. 19, 2016.

3.

Diagram 1: Block Diagram of Design

http://www.businessinsider.com/98-of-iphone-users-have-tried-siri-but-most-dont-use-it-regularly-2016-6
http://www.businessinsider.com/98-of-iphone-users-have-tried-siri-but-most-dont-use-it-regularly-2016-6
http://thenextweb.com/insider/2016/06/06/study-most-iphone-owners-are-too-embarrassed-to-use-siri-in-public/#gref
http://thenextweb.com/insider/2016/06/06/study-most-iphone-owners-are-too-embarrassed-to-use-siri-in-public/#gref

4.

Diagram 2: Schematics of design
5.​ Arduino Code:
#include "Arduino.h"
#if !defined(SERIAL_PORT_MONITOR)
 #error "Arduino version not supported. Please update your IDE to the latest version."
#endif

#if defined(SERIAL_PORT_USBVIRTUAL)
 // Shield Jumper on HW (for Leonardo and Due)
 #define port SERIAL_PORT_HARDWARE
 #define pcSerial SERIAL_PORT_USBVIRTUAL
#else
 // Shield Jumper on SW (using pins 12/13 or 8/9 as RX/TX)

 #include "SoftwareSerial.h"
 SoftwareSerial port(12, 13);
 #define pcSerial SERIAL_PORT_MONITOR
#endif

#include "EasyVR.h"

EasyVR easyvr(port);

//Groups and Commands
enum Groups
{
 GROUP_0 = 0,
 GROUP_1 = 1,
};

enum Group0
{
 G0_READY = 0,
};

enum Group1
{
 G1_GO = 0,
 G1_STOP = 1,
 G1_SPEED_UP = 2,
 G1_SLOW_DOWN = 3,
 G1_TURN_LEFT = 4,
 G1_TURN_RIGHT = 5,
 G1_TURN_OFF = 6,
};

int8_t group, idx;

void setup()
{
 // setup PC serial port
 pinMode(9,OUTPUT);

 pinMode(11,OUTPUT);
 pcSerial.begin(9600);

 // bridge mode?
 int mode = easyvr.bridgeRequested(pcSerial);
 switch (mode)
 {
 case EasyVR::BRIDGE_NONE:
 // setup EasyVR serial port
 port.begin(9600);
 // run normally
 pcSerial.println(F("---"));
 pcSerial.println(F("Bridge not started!"));
 break;

 case EasyVR::BRIDGE_NORMAL:
 // setup EasyVR serial port (low speed)
 port.begin(9600);
 // soft-connect the two serial ports (PC and EasyVR)
 easyvr.bridgeLoop(pcSerial);
 // resume normally if aborted
 pcSerial.println(F("---"));
 pcSerial.println(F("Bridge connection aborted!"));
 break;

 case EasyVR::BRIDGE_BOOT:
 // setup EasyVR serial port (high speed)
 port.begin(115200);
 // soft-connect the two serial ports (PC and EasyVR)
 easyvr.bridgeLoop(pcSerial);
 // resume normally if aborted
 pcSerial.println(F("---"));
 pcSerial.println(F("Bridge connection aborted!"));
 break;
 }

 while (!easyvr.detect())
 {
 Serial.println("EasyVR not detected!");

 delay(1000);
 }

 easyvr.setPinOutput(EasyVR::IO1, LOW);
 Serial.println("EasyVR detected!");
 easyvr.setTimeout(5);
 easyvr.setLanguage(0);

 group = EasyVR::TRIGGER; //<-- start group (customize)
}

void action();

void loop()
{
 if (easyvr.getID() < EasyVR::EASYVR3)
 easyvr.setPinOutput(EasyVR::IO1, HIGH); // LED on (listening)

 Serial.print("Say a command in Group ");
 Serial.println(group);
 easyvr.recognizeCommand(group);

 do
 {
 // can do some processing while waiting for a spoken command
 }
 while (!easyvr.hasFinished());

 if (easyvr.getID() < EasyVR::EASYVR3)
 easyvr.setPinOutput(EasyVR::IO1, LOW); // LED off

 idx = easyvr.getWord();
 if (idx >= 0)
 {
 // built-in trigger (ROBOT)
 group = GROUP_1; //<-- jump to another group X
 return;
 }
 idx = easyvr.getCommand();
 if (idx >= 0)
 {
 // print debug message

 uint8_t train = 0;
 char name[32];
 Serial.print("Command: ");
 Serial.print(idx);
 if (easyvr.dumpCommand(group, idx, name, train))
 {
 Serial.print(" = ");
 Serial.println(name);
 }
 else
 Serial.println();

// beep
 easyvr.playSound(0, EasyVR::VOL_FULL);
 // perform some action
 action();
 }
 else // errors or timeout
 {
 if (easyvr.isTimeout())
 Serial.println("Timed out, try again...");
 int16_t err = easyvr.getError();
 if (err >= 0)
 {
 Serial.print("Error ");
 Serial.println(err, HEX);
 }
 }
}

void action()
{
 switch (group)
 {
 case GROUP_0:
 switch (idx)
 {
 case G0_READY:
 // write your action code here
 group = GROUP_1; //<-- or jump to another group X for composite commands
 break;
 }
 break;
 case GROUP_1:

 switch (idx)
 {
 case G1_GO:
 // write your action code here
 // group = GROUP_X; <-- or jump to another group X for composite commands
 analogWrite(9,150);
 analogWrite(11,150);
 break;
 case G1_STOP:
 // write your action code here
 // group = GROUP_X; <-- or jump to another group X for composite commands
 analogWrite(9,0);
 analogWrite(11,0);
 break;
 case G1_SPEED_UP:
 // write your action code here
 // group = GROUP_X; <-- or jump to another group X for composite commands
 analogWrite(9,225);
 analogWrite(11,225);
 break;
 case G1_SLOW_DOWN:
 // write your action code here
 // group = GROUP_X; <-- or jump to another group X for composite commands
 analogWrite(9,110);
 analogWrite(11,110);
 break;
 case G1_TURN_LEFT:
 // write your action code here
 // group = GROUP_X; <-- or jump to another group X for composite commands
 unsigned long timeStart;
 timeStart = millis();
 unsigned long timeEnd;
 timeEnd = timeStart;
 while((timeEnd - timeStart) <= 3000){
 analogWrite(9,0);
 analogWrite(11,225);
 timeEnd = millis();
 }
 break;
 case G1_TURN_RIGHT:
 // write your action code here
 // group = GROUP_X; <-- or jump to another group X for composite commands
 unsigned long timeStart1;

 timeStart1 = millis();
 unsigned long timeEnd1;
 timeEnd1 = timeStart1;
 while((timeEnd1 - timeStart1) <= 3000){
 analogWrite(9,225);
 analogWrite(11,0);
 timeEnd1 = millis();
 }
 break;
 case G1_TURN_OFF:
 // write your action code here
 analogWrite(9,0);
 analogWrite(11,0);
 group = GROUP_0; //<-- or jump to another group X for composite commands
 break;
 }
 break;
 }
}

