Wireless Communication and Lights

Div Nagpaul
Fares Takieddine
Jeff Ito

Introduction

We wanted to create a system to satisfy the needs your average, lazy college student. The

student has just got into bed and realized he did not lock the door or turn off the lights. He is
already too comfortable to get back out of bed and do these things. Instead he could use our
solution of a wireless communication system that would lock the doors and turn off the lights

with the push of a button and without having to get out of bed.

Design

/

Communication Module

Send signal to turn
lights on/off

APP/ Remate

~

‘ Receive signal }7

IR SENSOR

.

> WiFi Module

Eventually
sendireceive signals
through wifi

/

&

|

h

\

Raspberry P

Power

Supply

Servo Motor <

~

Read signals,
determine whether to
wm lights onfoff
based on signal from
state sensar.

e

»,

/

\

SR

Turns lights on/off

| S

State Sensor

determines if lights
are on/off

-
@
J;E

Manual Override

o

Can still control lights
manually

Our initial design utilized a remote that would send a signal to an infrared sensor. The sensor
would be connected to a Raspberry Pi so that when it received a signal it would tell the
Raspberry Pi to activate. The Raspberry Pi would be connected to a logic circuit and a state
sensor to determine what state the servo motor was in. Based on the state, the Raspberry Pi
would then tell the servo motor to move accordingly. We would also have a manual override
button attached to the servo motor so that you would be able to turn the lights on and off without
have to use the remote. Eventually we would integrate a Wi-Fi module to the Raspberry Pi and
communicate through an app.

Our final design was very close to the original. The only minor changes we made were utilizing
an Arduino-Uno rather than a Raspberry Pi. One other minor change we made was to use a
bluetooth module attached to the Arduino to communicate with terminal commands rather than
a Wi-Fi module communicating with an app.

Final Code:

#include "Servo.h"

#include "stdio.h"

#include <IRremote.h>

#include <SoftwareSerial.h>

int bluetoothTx = 2; // TX-O pin of bluetooth mate, Arduino D2
int bluetoothRx = 3; // RX-I pin of bluetooth mate, Arduino D3
int dataFromBt;

SoftwareSerial bluetooth(bluetoothTx, bluetoothRx);

Servo myservo;

const int buttonPin = 5; // the number of the pushbutton pin
int currentPosition=40;

int buttonState = 0; I/ variable for reading the pushbutton status
int x =0;

int z=0;

int receiver = 11; // pin 1 of IR receiver to Arduino digital pin 11
IRrecv irrecv(receiver); /I create instance of 'irrecv'
decode_results results; /I create instance of 'decode_results'

/lint analogdecode=A5;

void setup() {
// put your setup code here, to run once:
Serial.begin(9600); // open the serial port at 9600 bps:
bluetooth.begin(115200); // The Bluetooth Mate defaults to 115200bps
bluetooth.print("$"); // Print three times individually
bluetooth.print("$");
bluetooth.print("$"); // Enter command mode
delay(100); // Short delay, wait for the Mate to send back CMD
bluetooth.printin("U,9600,N"); // Temporarily Change the baudrate to 9600, no parity
// 115200 can be too fast at times for NewSoftSerial to relay the data reliably
bluetooth.begin(9600); // Start bluetooth serial at 9600
pinMode(buttonPin, INPUT);
myservo.attach(7);
Serial.printin("IR Receiver Raw Data + Button Decode Test");
irrecv.enablelRIn(); // Start the receiver

}

void loop() {

/lII bluetooth begins

int bluetoothcalled=0;

if (bluetooth.available()) // If the bluetooth sent any characters
{Serial.printin("something was sent");

/I Send any characters the bluetooth prints to the serial monitor
bluetoothcalled=1;

Serial.printin((char)bluetooth.read());
dataFromBt = bluetooth.read();
}
/ll/bluetooth ends
I/l read the state of the pushbutton value:
buttonState = digitalRead(buttonPin);
//Serial.print(buttonState);
int y=1000;
// check if the pushbutton is pressed.
Il if it is, the buttonState is HIGH:
if (irrecv.decode(&results)){ // have we received an IR signal?
/lirrecv.decode(&results);
Serial.printin(results.value, HEX); // UN Comment to see raw values
y=translatelR();//(buttonState);
//delay(1000);
irrecv.resume(); // receive the next value
}
//Serial.printin(y);
if(y==0]||buttonState==1||bluetoothcalled==1 ¥
if(z==0X
myservo.write(179);
delay(1500);
z=1;
}
else{
myservo.write(0);
delay(1500);
z=0;
}
}
/lirrecv.resume();
}
int translatelR() // takes action based on IR code received
I/l describing Car MP3 IR codes
{

switch(results.value)

{

/lint x;

case OxFFA25D:
Serial.printin(" CH- ";
x=20;
break;

case OxFF629D:

Serial.printin(" CH ");
x=20;
break;

case OxFFE21D:
Serial.printin(" CH+ ");
x=20;
break;

case OxFF22DD:
Serial.printin(" PREV ");
x=20;
break;

case OxFFO2FD:
Serial.printin(" NEXT ");
return 20;
break;

case OxFFC23D:
Serial.printin(" PLAY/PAUSE
x=20;
break;

case OxFFEO1F:
Serial.printin(" VOL- ");
x=20;
break;

case OxFFA857:
Serial.printin(" VOL+ ");
x=20;
break;

case OxFF9OO06F:
Serial.printin(" EQ ");
x=20;
break;

case OxFF6897:
Serial.printin(" 0 ");
x=0;
break;

case OxFF9867:
Serial.printin(" 100+ ");
x=100;
break;

case OxFFBO4F:
Serial.printin(" 200+ ");
x=200;
break;

case OxFF30CF:
Serial.printin(" 1
x=1;
break;

case OxFF18E7:
Serial.printin(" 2
X=2;
break;

case OxFF7A85:
Serial.printin(" 3
x=3;
break;

case OxFF10EF:
Serial.printin(" 4
x=4;
break;

case OxFF38C7:
Serial.printin(" 5
x=5;
break;

case OxFF5AAS5:
X=6;
Serial.printin(" 6
break;

case OxFF42BD:
xX=7;
Serial.printin(" 7
break;

case OxFF4AB5:
x=8;
Serial.printin(" 8
break;

case OxFF52AD:
x=9;
Serial.printin(" 9
break;

default:

");

Serial.printin(" other button

x=25;

}
delay(500);

return x;

I
void translatelR(int button){
Serial.print(results.value);Serial.print("\n");
if(results.value == 0xFF6897 || button==1){
// turn LED on:
if(x==0){
myservo.write(179);
delay(1500);
x=1;
}
else{
myservo.write(0);
delay(1500);
x=0;

}

}
*

Results

Our final results were very positive. We were able to demonstrate our system accomplishing the
appropriate motions based on signals from an IR remote and commands from a terminal. We
were also able to demonstrate a working override button.

Future Work

One thing we were not able to accomplish on our project during the semester was collaborating
with the other group who were working on the second part of the system (lock). We would
integrate both systems for controlling the lights and controlling the lock into one microcontroller
so that you would be able to control the lights and lock from one place.

Another thing we could work on for the future would be to fine tune the mechanical portions of
the project. This means figuring out a mechanical attachment for the servo motor to make our
system universal so that it can be mounted to any light and be able to turn the light on and off.

Conclusion

We were able to get the IR remote and sensor communicating properly with each other with a
good working range. We were able to get the Bluetooth module working properly to
communicate with terminal commands. We were able to get the servo motor to move to
appropriate positions to turn lights on and off.

We were not able to get a proper mechanical system attached to the servo motor to control all
lights. We did get a certain mechanism attached to the servo motor to control a specific light
switch. However, when we tried the mechanism with other light switches, it would not work

properly.

We learned a great deal working through this project. We mainly learned about how infrared
communication works. We learned about how infrared signals are sent by the remote and
picked up by the sensor. We learned how these signals are then decoded by a system which
can then send out other signals based on the original IR signal. We learned that the IR sensor
can be very voltage sensitive. If the sensor is not receiving a fairly constant voltage it can act
like it is receiving wrong signals when it is receiving no signals at all. We also learned some
things about Arduino code? We learned a number of things about bluetooth communication.

