Operation: SWTCHCTRL
Introduction

The problem being addressed in our project was the need for more control when using a voltage
dependent device, such as a lamp or a fan. The goal of our project was to create a method of
controlling the brightness of a lamp and toggle its state through the use of an arduino and
eventually through an app on a phone.

The solution we proposed was to use a common wall switch and dimmer, such as those that
could be found in one’s house, and wire them to an extension cord. This would provide the
mechanics of controlling the voltage through the cord. In order to control the switches’
positions, we would attach servos to each switch, which we could then program to move to the
desired position.

Design

Block Diagram:

- { Power Supply } \

{ Servo Motor Arduino 360 Servo Motor

;{ Switch Potentiometer

Appliance

Power Supply: 110v wall outlet for switches, 9v battery for arduino
Arduino: controls servo position based on external input (we used a button for demo purposes)
Servo Motors: move the switch and potentiometer to the correct positions



Switch: toggles voltage to appliance
Potentiometer: limits voltage to appliance

Picture of Demo:

Flow Chart of Software:



Code Used:

Operation SWTCHCTRL

buttonState = -1

Button Pressed?

buttonState++

False

buttonState == 6?

buttonState = 0

N

Set Dimmer Position

Did dimmer switch to 0%?

Turn light switch off




See appendix.
Results

We accomplished the main part of what we wanted to do, which was to control appliances
remotely. Our finished project allows us to dim lights or turn on and off devices using an
arduino, which we can control using a wide variety of inputs. Our results were qualitatively
better than manually controlling the switches but not as good as using transistors to accomplish
the same thing. Our servos were fast and accurate but could never be near instantaneous or super
precise like a transistor. Our results don’t really have any data involved because our goal was to
automate a task, so a quantitative analysis would not be very meaningful.

Future Work

The next step that we would take with this project is devising a better method of inputting the
desired location. With our current setup, we only had a button. This required us to cycle
through predefined states until we reached the one we wanted. In the future, we would like to be
able to control the system with an app on one’s phone, allowing us to change directly to the
desired state and have more control over the project.

Conclusions

The circuit we designed was really simple and easy to implement due to servo motors only
requiring power and a PWM signal. Our toggle switch worked flawlessly because the servo
attached to that switch allowed to us to set the position it was rotated to, and therefore we could
just alternate between two angles with a little a bit of code. The continuous servo attached to the
potentiometer did not work as well because we could only control the speed and direction of this
motor. This caused the servo to sometimes rotate past the maximum and minimum angles the
potentiometer could handle and damage the velcro connection. If possible, it would have been
better to use a servo that is not continuous but is capable of rotating more than 180 degrees that
way it could operate like the servo we used on the toggle switch.

I think the most important thing we learned was to not overplan and rather to start tinkering and
prototyping as soon as possible. We spent a lot of time planning out the project but didn’t leave
much time to actually build it, and when problems arose that left even less time for
troubleshooting which turned out to be the bulk of our work. In the future we will still set out a
plan but we will not try to plan super far ahead because you can't predict what problems will
arise and change the plan.



Appendix

#include <Servo.h> // servo library

Servo servol; // servo control objects
Servo servo2;

int currentPercent = 9;
int buttonState = -1;
int stopVal = 88;

const int buttonPin = 2; // the number of the pushbutton pin
/* 0 = 100%
* 1 = 80%
2 = 60%
3 = 40%
4 = 20%
*/

void setup()

servol.attach(9); //1light switch
servo2.attach(10); //Dimmer
servo2.write(stopval);
Serial.begin(96090);

pinMode (13, OUTPUT);
pinMode(buttonPin, INPUT);
changeSwitch(0);

void loop()
{

int b = isButtonPressed();
Serial.println(buttonState);

if(b) {
switch(buttonState){

case 0: //100%
setDimmer(100);
break;

case 1: //80%
setDimmer(90);
break;

case 2: //60%
setDimmer(80);
break;

case 3: //40%
setDimmer(70);
break;

case 4: //20%
setDimmer(60);
break;

default: //0%
setDimmer(0);




}

break;

}
}

//delay(1000);

void setDimmer(int percent)

{

}
/*

/* Don't do anything if we're already at the proper position */
Serial.print("percent: ");
Serial.println(percent);
if(percent == currentPercent)
return;

//Serial.println(percent);
if((percent < @) && (percent > 100))
return;

//turn switch on / off

if((percent > @) && (currentPercent == 0))
changeSwitch(1);

else if((percent == @) && (currentPercent > 0))
changeSwitch(0);

//decrease percent - counter-clockwise
if(percent < currentPercent)
{
//changeSwitch(0);
int turn_delay = 1011 * ((double)(currentPercent-percent)/100);
servo2.write(102); // 88 makes it stop
delay(turn_delay);
servo2.write(stopval);
delay(200); //prevent errors due to jerking at end of motion

}

/* Turning clockwise 100% (scaled by percent)*/
else if(percent > currentPercent)
{
int turn_delay = 1010 * ((double)(percent-currentPercent)/100);
servo2.write(74); // 88 makes it stop
delay(turn_delay);
servo2.write(stopval);
delay(200); //prevent errors due to jerking at end of motion

}

currentPercent = percent;

void loopLightswitch(){

int position;

servol.write(100); //on




delay(1000);
servol.write(50); //off
delay(1000);

for(position = 50; position < 100; position += 2)

{
servol.write(position); // Move to next position
//Serial.print("loop #1: ");
//Serial.println(position);

delay(20); // Short pause to allow it to move
}
delay(500);
for(position = 100; position >= 50; position -= 2)
{

servol.write(position); // Move to next position
//Serial.print("loop #2: ");
//Serial.println(position);

delay(20); // Short pause to allow it to move
}
}
*/
void changeSwitch(int status) {
if(status)
{

servol.write(99); //on
digitalWrite(13, HIGH);

}

else

{
servol.write(53); //off
digitalWrite(13, LOW);

}

}

int isButtonPressed()
{
int buttonval = digitalRead(buttonPin);
if(buttonval){
while(digitalRead(buttonPin)){
delay(1);
}
buttonState++;
if(buttonState == 6)
buttonState = 0;
return 1;

}

return 0;




