Music Cube
ECE 110 Honors Lab Final Report

by
Dave Simley and Bradley Morrell

1. Introduction

a. Problem Statement
In today’s modern age, music is transitioning from being purely auditory to
more of an audio-visual experience. For example, many artists, when
performing live, incorporate a light show with their performance, because
when an extra sense is stimulated, music becomes more captivating and
enjoyable. By designing and creating a product that is able to provide a
dynamic audio-visual experience, listeners will be more engaged and
receptive of their music.

b. Proposed Solution
Our proposed solution to provide this experience is to design and create a
small cube that will be able to actively interpret a musical signal and
provide some visual animation depending on the frequency and strength
of the signal. We plan to do this by creating a seven-by-seven LED display
on a face of a cube that will be a graphic equalizer for a musical input, with
each column representing a different frequency, and each row
representing how loud the respective frequency is in the musical signal.
With this device, an extra sense will be engaged while listening to music,
providing a more satisfying and captivating musical experience. Also, due
to the graphical interpretation of the music, the cube’s applicability can
extend beyond providing an audio-visual experience. Our project can be
used for instructional purposes, demonstrating what different frequencies
are found in music, and as a means to interpret the strength of certain
frequencies in a signal.

2. Design

a. Block Diagrams

Arduino MEGA

LED Face

Power Supply (5V) Digital Outputs 2-8

63 Hz 160 Hz 400 Hz 1 kHz 2.5 kHz 6.25 kHz 16 kHz

MSGEQ7 Digital Outputs 9-15
Power Supply.
Digital Outputs 16-22
DC Output Analog Input 0
Reset Strobe Digital Outputs 23-29

Digital Outputs 30-36

Digital Outputs 37-43

Digital Output 52

Digital Output 53 Digital Outputs 44-50

b. Written Description of Block Diagrams

Our project utilized Sparkfun’s MSGEQ?7 chip, which is able to interpret a
musical signal and then send out information pertaining to preset
frequencies it had analyzed. When a logical “1” value is applied to the
chip’s strobe pin, then a logical “0” is applied to the strobe, the chip’s DC
output will then output a DC voltage that is representative of the amplitude
of a certain frequency (the first one being 63 Hz). Then, when a logical “1”
followed by a logical “0” is applied to the strobe pin, the chip’s multiplexor
will then advance to the next frequency (160 HZ) and provide a DC
voltage that is representative of its amplitude. When all the frequencies
have been analyzed by the Arduino’s analog input, the Arduino will then
apply a logical “1” to the chip’s reset pin, resetting the multiplexor back to
the first frequency. Also, by having the chip powered by the Arduino, we
save valuable board real estate. When the Arduino analyzes the DC
voltage given by the chip pertaining to a frequency, the Arduino will then
turn on or off certain digital outputs in order to represent the amplitude of a
certain frequency on the LED display. Digital pins 2-8 are used for the 63
Hz frequency, 9-15 are used for 160 Hz, etc. When a loud 63 Hz
frequency is detected in the musical signal, digital outputs 2-7 or possibly
2-8 will be turned on, so that the LED'’s in the first column are all almost
fully lit. The Arduino then uses the strobe pin on the chip to cycle through

each frequency at a fast speed, and analyzing each one so that a smooth,
clear equalizer is seen on the LED display.
c. Pictures of the Display

Front of the LED Display

Breadboard containing circuitry of the MSGEQ7 chip

d. Flow Chart of Software

Music Cube @

Flowchart '

Initialize grid pointers
Initialize dimmed LED
pointers

By Bradley Initialize Counter

Initialize Voltage Reading

Morrell n
and DaVid Initialize Arduino pins
= used
S im Iey (StrobePin, ResetPin,
DetectPin, and LED pins)

S2

Reset the bandpass
analyzer
-

Is the
Arduino
on?

Store voltage of
DetectPin into Voltage
Reading

Set appropriate amount
of LEDs on and off
according to the voltage
reading in the column of
LEDs pointed to by the
counter

Set which LED will get
dimmer in the column
peinted to by the
counter

/ Switch on strobe /

L
/ Switch off strobe /
]

Switch off ALL dim LEDs
pointed to by dimmed
LED pointers

Wait 2 milliseconds

Switch on ALL dim LEDs
pointed to by dimmed
LED pointers

I Counter = Counter + 1 I

Is counter >= 7

Reset the bandpass
analyzer so that the

voltage readings for the
analyzer do not desync
with the arduino
program.

Counter=0

e. Code Used

//Code Copyright Bradley Morrell and Dave Simley
//Licensed under GPL version 3.

int LEDGridLocation[7][7];

int DimmedLEDs([7];

int StrobePin = 52;

int ResetPin = 53;

int DetectPin = 0;

int Counter = 0;

int Reading 1;

void setupGrid()
{ for (int 1=0;i<7;i++)//set up gridlocation as pointers to grid
{ for (int 3=0;3<7;3++)
{ LEDGridLocation[i] [j] = 7*i + J + 2;

for (int 1=0;1<49;i++)//setup PinMode for all pins in grid

pinMode (i, OUTPUT) ;

void setPinValues() // set pins on or off according to reading
{
if (Reading >= 0 && Reading < 128)
{
for (int i=0;i<7;1i++)
{
digitalWrite (LEDGridLocation[Counter] [i],LOW) ;

DimmedLEDs [Counter] = -1;
}
else if (Reading >= 128 && Reading < 192)
{
for (int i=0;i<1;i++)
{
digitalWrite (LEDGridLocation[Counter] [i],HIGH) ;

for (int i=1;i<7;i++)
digitalWrite (LEDGridLocation[Counter] [i],LOW) ;

DimmedLEDs [Counter] = 0;
}
else if (Reading >= 192 && Reading < 256)
{
for (int i=0;i<1;i++)
{
digitalWrite (LEDGridLocation[Counter] [i],HIGH) ;
}
for (int i=1;i<7;i++)
{
digitalWrite (LEDGridLocation[Counter] [i],LOW) ;

DimmedLEDs [Counter] = -1;
}
else if (Reading >= 256 && Reading < 320)
{
for (int i=0;i<2;i++)

{

digitalWrite (LEDGridLocation[Counter] [i],HIGH) ;
}
for (int 1i=2;i<7;1i++)
{

digitalWrite (LEDGridLocation[Counter] [i],LOW) ;

DimmedLEDs [Counter] = 1;
}
else if (Reading >= 320 && Reading < 384)
{
for (int 1i=0;1i<2;1i++)
{
digitalWrite (LEDGridLocation[Counter] [i],HIGH) ;
}
for (int i=2;i<7;i++)
{
digitalWrite (LEDGridLocation[Counter] [i],LOW) ;

DimmedLEDs [Counter] = -1;
}
else if (Reading >= 384 && Reading < 448)
{
for (int i=0;i<3;1i++)
{
digitalWrite (LEDGridLocation[Counter] [i],HIGH) ;

for (int 1i=3;i<7;1i++)
digitalWrite (LEDGridLocation[Counter] [i],LOW) ;

DimmedLEDs [Counter] = 2;
}
else if (Reading >= 448 && Reading < 512)
{
for (int 1i=0;1i<3;1i++)
{
digitalWrite (LEDGridLocation[Counter] [i],HIGH) ;
}
for (int 1i=3;i<7;i++)
{
digitalWrite (LEDGridLocation[Counter] [i],LOW) ;

DimmedLEDs [Counter] = -1;
}
else if (Reading >= 512 && Reading < 576)
{
for (int i=0;i<4;i++)
{
digitalWrite (LEDGridLocation[Counter] [i],HIGH) ;

for (int i=4;i<7;1i++)
digitalWrite (LEDGridLocation[Counter] [i],LOW) ;

DimmedLEDs [Counter] = 3;
}
else if (Reading >= 576 && Reading < 640)
{
for (int 1i=0;i<4;1i++)
{
digitalWrite (LEDGridLocation[Counter] [i],HIGH) ;
}
for (int i=4;i<7;i++)
{
digitalWrite (LEDGridLocation[Counter] [i],LOW) ;

DimmedLEDs [Counter] = -1;
}
else if (Reading >= 640 && Reading < 704)
{
for (int i=0;i<5;i++)
{
digitalWrite (LEDGridLocation[Counter] [i],HIGH) ;

for (int i=5;i<7;1i++)
digitalWrite (LEDGridLocation[Counter] [i],LOW) ;

DimmedLEDs [Counter] = 4;

}
else if (Reading >= 704 && Reading < 768)
{
for (int i=0;i<5;1i++)
{
digitalWrite (LEDGridLocation[Counter] [1i],HIGH) ;
}
for (int 1i=5;i<7;i++)
{
digitalWrite (LEDGridLocation[Counter] [i],LOW) ;

DimmedLEDs [Counter] = -1;
}
else if (Reading >= 768 && Reading < 832)
{
for (int 1i=0;1i<6;i++)
{
digitalWrite (LEDGridLocation[Counter] [i],HIGH) ;

for (int i=6;i<7;1i++)
digitalWrite (LEDGridLocation[Counter] [i],LOW) ;

DimmedLEDs [Counter] = 5;

}
else if (Reading >= 832 && Reading < 896)
{
for (int i=0;1i<6;1i++)
{
digitalWrite (LEDGridLocation[Counter] [1],HIGH) ;
}
for (int 1i=6;1i<7;i++)
{
digitalWrite (LEDGridLocation[Counter] [i],LOW) ;

DimmedLEDs [Counter] = -1;
}
else if (Reading >= 896 && Reading < 960)
{
for (int 1i=0;i<7;i++)
{
digitalWrite (LEDGridLocation[Counter] [i],HIGH) ;

DimmedLEDs [Counter] = 6;
}
else if (Reading >= 960 && Reading < 1024)
{
for (int 1i=0;i<7;i++)
{
digitalWrite (LEDGridLocation[Counter] [i],HIGH) ;

DimmedLEDs [Counter] = -1;

else
{
for (int 1i=0;i<7;1i++)
{
digitalWrite (LEDGridLocation[Counter] [i],LOW) ;

DimmedLEDs [Counter] = -1;

}
void turnOffDimLeds ()
{
//this will turn off the power for all pins that are in the dim state.
for (int 1i=0;i<7;i++)
{
if (DimmedLEDs[i] != -1)
{
digitalWrite (LEDGridLocation[i] [DimmedLEDs[i]],LOW) ;

}
void turnOnDimLeds ()
{
//this will turn on the power for all pins that are in the dim state.
for (int i=0;i<7;i++)
{
if (DimmedLEDs([i] != -1)
{
digitalWrite (LEDGridLocation[i] [DimmedLEDs[1i]],HIGH) ;

void setup () {
Serial.begin(9600) ;
setupGrid() ;
pinMode (StrobePin, OUTPUT); //NEED PINMODE CRAP
pinMode (ResetPin, OUTPUT) ;
pinMode (DetectPin, INPUT) ;
digitalWrite (ResetPin,HIGH); //turn on reset
delay (2);
digitalWrite (ResetPin,LOW); //turn off reset and turn on strobe
digitalWrite (StrobePin, HIGH) ;
delay (2);
digitalWrite (StrobePin, LOW); //turn off strobe
}
void loop () {
// put your main code here, to run repeatedly:

Reading = analogRead (DetectPin); //storeAnalogReading into variable
setPinValues (); //TurnOnLEDs

digitalWrite (StrobePin, HIGH); //switch on the strobe

delay (2);

digitalWrite (StrobePin, LOW); //switch off the strobe
turnOffDimLeds (); //SwitchoffDimLeds

delay(2);

turnOnDimLeds () ; //switchonDimLeds

Counter++;
//check if counter is 7 or more, if it is, then reset the filter (includes a delay)
switch on strobe and switch off strobe.
if (Counter >= 7)
{
digitalWrite (ResetPin,HIGH); //turn on reset
delay (2) ;
digitalWrite (ResetPin,LOW); //turn off reset and turn on strobe
digitalWrite (StrobePin, HIGH) ;
delay (2) ;

digitalWrite (StrobePin,LOW); //turn off strobe
Counter = 0;

3. Results

a. Qualitative Analysis of Results

i. We were able to create the music visualizer. It worked! The
visualization was smooth and followed the amplitude of the music
as expected. The dimming of the LEDs to show the music
amplitude was in between a row of LEDs worked nicely. We
decided against putting the LEDs on a cube and instead put them
on a flat screen.

b. Quantitative Analysis of Results

i. When a strong musical signal was sent into the MSGEQ7 chip, the
DC output would give off around 5 Volts (1023 as read by the
Arduino). When no music was playing, the chip would give off a DC
voltage around .1 Volts (around 32 as read by the Arduino), and
when a moderate volume of music was being played, the chip
would output a DC voltage around 3-4 Volts (600-800 as read by
the Arduino). We then assigned these values to then be accurately
displayed on the LED display so that strong signals would turn on
all of the LEDs, whereas no signal would turn off all of the LEDs.
We were also able to get one column of the cube’s screen to
update 2 milliseconds at a time. Then after updating the rightmost
column of the cube’s screen, it takes 4 milliseconds to start
updating the leftmost column. All in all it takes 16 milliseconds to
update each column after last updating it. This is obviously too fast
for human eyes, so the visualizer appears smooth.

4. Future Work

i. Inthe future we will create a housing for the music visualizer, so
that it actually is a cube instead of a screen made of LEDs. We also
could add more features like an on-board microphone, scrolling text
across the screen, or adding pre-programmed light shows.

5. Conclusion
a. What Worked

i. The visualizer idea we had worked. The screen updates smoothly
and nicely. The visualizer actually looks like a visualizer. The code
worked after a few bug fixes and there were no soldering errors.

The LED dimming function works as intended. It is as if the stars
aligned and the universe wanted the project to work.

b. What Didn’t Work

First we had problems with the wiring of the bandpass filter. We
soon figured out that the problem was the filter was receiving no
power. Then we had problems with the code, first we realized we
could not use ports 0 and 1 on the arduino because they could not
send power through both ports at once. Then we realized that the
visualizer was not updating properly because we forgot to reset the
counter to zero after resetting the filter, so the counter kept going
up and up. Also we decided to make a screen instead of a cube to
allow people to see the visualization more clearly.

c. What We Learned

We learned to combine and apply our knowledge learned in ECE
110 about circuits, knowledge learned in ECE 120 about
multiplexers and logic, and our previously learned knowledge about
coding and soldering to make a fully functional project. We also
learned more about the process of doing a project over an entire
semester and how to get our project working by a specific time. We
also learned that sometimes electronic projects do work out with
minimal issues, which is a rare occurrence for both of us.

