
ECE 120 Lecture 19 March 6, 2015

SP15 1 V. Kindratenko

Finite state machines: abstraction

Lecture Topics
 Finite State Machine (FSM)

 Machine Models

Reading assignments
 Textbook § 3.6

 Prof. Lumetta’s Notes Set 3.1: Serialization and Finite State Machines

ECE 120 Lecture 19 March 6, 2015

SP15 2 V. Kindratenko

Sequential logic
 combinational circuit: output is a function of its input ONLY

o examples: logic gates, adder, MUX, etc.

 sequential circuit: output depends on the input AND on stored information (state)
o examples: memory elements, finite state machine, etc.
o state of a system is a “snapshot” of all relevant elements at a given moment in time
o conceptually, sequential logic circuit consists of 1) a combinational logic circuit and 2) a

storage element

 (state machine)

 We will learn how to design sequential circuits by representing them as finite state machines

Finite State Machines
 A finite state machine (or FSM) is a model for understanding the behavior of a system by

describing the system as occupying one of a finite set of states, moving between these states in
response to external inputs, and producing external outputs.

 In any given state, a particular input may cause the FSM to move to another state
o This combination is called a transition rule.

 An FSM consists of 5 elements
o A finite number of states
o A finite number of external inputs
o A finite number of external outputs
o An explicit specification of all state transitions
o An explicit specification of what determines each external output value

 When an FSM is implemented as a digital system
o all states must be represented as patterns using a fixed number of bits
o all inputs must be translated into bits, and
o all outputs must be translated into bits
o For a digital FSM, transition rules must be complete

 given any state of the FSM, and any pattern of input bits, a transition must be
defined from that state to another state or itself.

o Calculation of outputs for a digital FSM reduces to Boolean logic expressions.

 In this class, we will focus on clocked synchronous FSM implementations, in which the FSM’s
internal state bits are stored in flip-flops.

 FSM can be described by
o List of abstract states
o Next-state or state transition table
o State transition or simply state diagram

Sequential circuit

Combinational

Logic Circuit

Storage

Elements

Inputs Outputs

ECE 120 Lecture 19 March 6, 2015

SP15 3 V. Kindratenko

 FSM can be implemented a s a sequential circuit consisting of
o Combinational logic that computes external outputs and state transitions
o Storage elements that store current state

Example: FSM for a keyless entry system for a car

Abstract model

 List of abstract states for a keyless entry system for a car

o We have merely named the states rather than specifying the bit patterns to be used for
each state—for this reason, we refer to them as abstract states.

o The description of the states in the first column is an optional element often included in
the early design stages for an FSM, when identifying the states needed for the design.

o A list may also include the outputs for each state. Again, in the list below, we have
specified these outputs abstractly. By including outputs for each state, we implicitly
assume that outputs depend only on the state of the FSM.

 We will return to this assumption in more detail later

 State table (or next-state table, or state transition table)
o Maps the current state and input combination into the next state of the FSM.

o This abstract state table outlines desired behavior at a high level, and is often
ambiguous, incomplete, and even inconsistent

 For example, what happens if a user pushes two buttons?
 What happens if they push unlock while the alarm is sounding?
 These questions should eventually be considered.

 State transition diagram (or transition diagram, or state diagram) illustrates the contents of the
next-state table graphically

o with each state drawn in a circle, and
o arcs between states labeled with the input combinations that cause these transitions

from one state to another.

ECE 120 Lecture 19 March 6, 2015

SP15 4 V. Kindratenko

o Implementing an FSM using digital logic requires that we
 translate the design into bits,
 eliminate any ambiguity, and
 complete the specification.

o There are many questions to answer in order to implement this FSM as a digital circuit
 How many internal bits should we use?
 What are the possible input values, and how are their meanings represented in

bits?
 What are the possible output values, and how are their meanings represented

in bits?
 …

From abstract model to digital system

 Given four states, we need at least ⌈log2(4)⌉ = 2 bits of internal state, which we store in two flip-
flops and call S1S0.

 Let’s list input and output signals and define their meaning:
o Outputs

 D driver door; 1 means unlocked
 R other doors (Remaining doors); 1 means unlocked
 A alarm; 1 means alarm is sounding

o Inputs
 U unlock button; 1 means it has been pressed
 L lock button; 1 means it has been pressed
 P panic button; 1 means it has been pressed

 We can now choose a representation for our states and rewrite the list of states, using bits both
for the states and for the outputs.

o The order of states in the list is not particularly important, but should be chosen for
convenience and clarity

ECE 120 Lecture 19 March 6, 2015

SP15 5 V. Kindratenko

o We can also rewrite the next-state table in terms of bits.
 We use Gray code order on both axes, as these orders make it more convenient to

use K-maps.
 The values represented in this table are the next FSM state given the current state

S1S0 and the inputs U, L, and P.
 Our symbols for the next-state bits are S1

+ and S0
+.

 The “+” superscript is a common way of expressing the next value in a
discrete series

 The next-sate table should be sufficient to derive expressions for S1
+(S1, S0,U,L, P)

and S0
+(S1, S0,U,L, P) as well as expressions for the output logic D(S1, S0),R(S1, S0), and

A(S1, S0).

 In the process of writing out the next-state table, we have made decisions for all of the
questions that we asked earlier regarding the abstract state table. These decisions are also
reflected in the complete state transition diagram shown below.

ECE 120 Lecture 19 March 6, 2015

SP15 6 V. Kindratenko

o Note that the states have been extended with state bits and output bits, as S1S0/DRA.

 What’s left is to write out Boolean expressions for the next-state variables S1
+ and S0

+, and for
the outputs D, R, and A.

Machine Models
 There are two types of sequential circuit models:

o Mealy machine. The outputs depend on the present state and the inputs. Mealy
outputs are asynchronous: outputs can change in response to input changes -
independent of the clock.

o Moore machine. The outputs depend only on the present state. Moore outputs are
synchronous: outputs change only with the clock edge.

o There are also machines which are mixed Mealy/Moore. These have both Mealy outputs
and Moore outputs.

 Mealy-Moore Differences
o In general, a Moore machine has more states than an equivalent Mealy machine

because different states are required for different outputs.
o The behavior of the Moore machine differs slightly from the Mealy.

 A Mealy machine can have different output values within a single state.

ECE 120 Lecture 19 March 6, 2015

SP15 7 V. Kindratenko

 The Moore machine will have a single output value with each state.
 So the Moore machine typically has more states and the output may be slightly

delayed.
 Also, a Mealy machine may have "false outputs" or "glitches", due to the timing

of input changes.

 Advantages / Disadvantages:
o The Moore machine has a number of advantages over Mealy:

 the output can be read during the entire clock period,
 there are no output glitches, and
 Moore machines are easier to compose.

o However, the big advantage of Mealy machines is that they require fewer states - and
for this reason they continue to be popular with designers.

Example: 01 sequence recognizer
 Let’s develop a model for a recognizer of the pattern of a 0 followed by a 1 on a single input that

outputs a 1 when it observes the pattern.

 Mealy machine

o The machine occupies state A when the last bit seen was a 0, and state B when the last
bit seen was a 1.

o The transition arcs in the state diagram are labeled with two values instead of one:
 Since outputs can depend on input values as well as state, transitions in a Mealy

machine are labeled with input/output combinations, while states are labeled
only with their internal bits (or just their names).

o Notice that the outputs indicated on any given transition hold only until that transition
is taken (at the rising clock edge), as is apparent in the timing diagram.

 When inputs are asynchronous, that is, not driven by the same clock signal,
output pulses from a Mealy machine can be arbitrarily short, which can lead to
problems.

 Moore machine

ECE 120 Lecture 19 March 6, 2015

SP15 8 V. Kindratenko

o For a Moore machine, we must create a special state in which the output is high.
o Doing so requires that we split state B into two states

 a state C in which the last two bits seen were 01, and
 a state D in which the last two bits seen were 11.
 Only state C generates output 1.
 State D also becomes the starting state for the new state machine.

o The state diagram illustrates the changes, using the transition diagram style that we
introduced earlier to represent Moore machines.

o Notice in the associated timing diagram that the output pulse lasts a full clock cycle.

