HOUR EXAMINATION #2

1) Write your official name (not a nickname);

Last Name (use CAPITAL letters): Solution
First Name (use CAPITAL letters):
NetId & UIN:
2) Write your name and section at the back of the test.
DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD
Make sure to write your name AGAIN at the top of every page of your
exam.
A. Write or print clearly. Answer each problem on the exam itself. If you need extra workspace, use the back of the previous page. Clearly identify the problem number on any additional pages.
B. In order to receive partial or full credit , you must show all your work , e.g., your solution process, name the equation(s) that you use, the values of the variables used in the equation(s), etc. You must also include the unit of measurement in each answer.
Students caught cheating on this exam will earn a grade of F for the entire course. Other penalties may include suspension and/or dismissal from the university.
I have read and acknowledge the above statements.
G*
Signature:

Problem 1 (10 points)

Reduce $\overline{XY} + Z$ into a sum of products (i.e. can be implemented with AND-OR logic assuming complementary inputs are available). Show each of your steps by circling the correct Boolean identity used. More spaces for steps than are actually needed are given because there are many ways to do this problem. **Hint:** This can be solved quickly if you start with the outermost negation.

Start with $\overline{\overline{XY}} + Z$. After using the Boolean identity:

(CIRCLE ONE)

OR	AND
Identity	Identity
Null	Null
Idempotence	Idempotence
Complementary	Complementary
Involution	Involution

OR	AND				
Commutative	Commutative				
Associative	Associative				
Distributive	Distributive				
(De Morgan)	De Morgan				
Absorption	Absorption				
No Name	No Name				

the expression becomes $\overline{\overline{X}}\overline{\overline{Z}}$.

After using the Boolean identity:

(CIRCLE ONE)

OR	AND				
Identity	Identity				
Null	Null				
Idempotence	Idempotence				
Complementary	Complementary				
Involution	Involution				

OR	AND				
Commutative	Commutative				
Associative	Associative				
Distributive	Distributive				
De Morgan	De Morgan				
Absorption	Absorption				
No Name	No Name				

the expression becomes $\overline{X}\overline{Y}\overline{Z}$

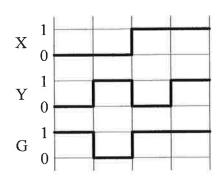
After using the Boolean identity:

(CIRCLE ONE)

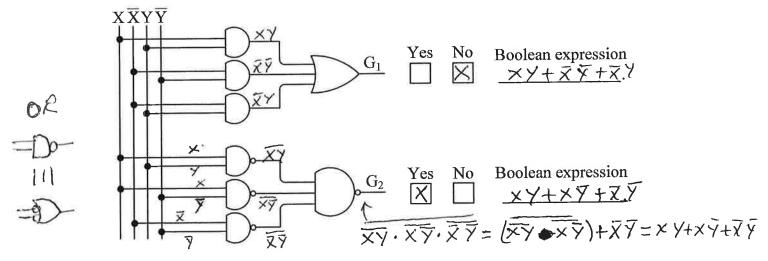
OR	AND				
Identity	Identity				
Null	Null				
Idempotence	Idempotence				
Complementary	Complementary				
Involution	Involution				

OR	AND				
Commutative	Commutative				
Associative	Associative				
Distributive	Distributive				
De Morgan	De Morgan				
Absorption	Absorption				
No Name	No Name				

. 1		1	
tha	expression	hacamac	
HIE	CXDICSSIOII	Decome?	

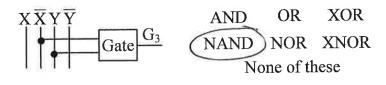

Problem 2 (10 points)

Given the truth table, mark ALL the correct expressions for F.


$$F = X\overline{Y}\overline{Z} + XY\overline{Z} = X\overline{Z}(\overline{Y}tY) = X\overline{Z}$$

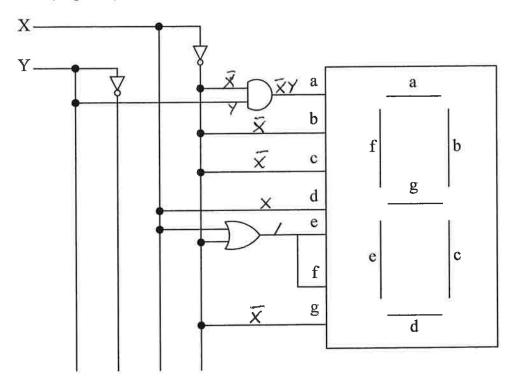
 $F = F = X\overline{Z} = \overline{X} + Z$

Problem 3 (15 points)


(a) (6 pts) Given the timing diagram, write out G as the canonical sum of products.

(b) (6 pts) For each circuit below, answer whether the circuit correctly implements G and write a Boolean expression for the circuit. You do not need to simplify the expression.

(c) (3 pts) The optimal circuit for G is shown below. Circle the unknown gate.

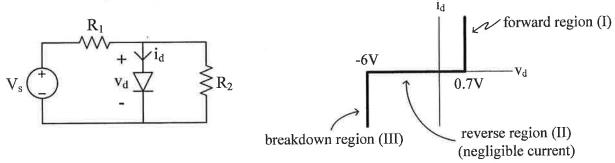

$$G = \overline{X}\overline{Y} + X\overline{Y} + X\overline{Y} + X\overline{Y} + XY = (\overline{X} + X)\overline{Y} + X(\overline{Y} + Y) = \overline{Y} + X$$

$$\overline{G} = \overline{\overline{Y} + X} = \overline{X}\overline{Y}$$

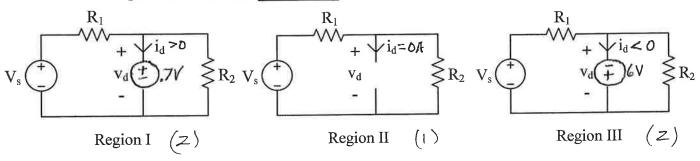
Problem 4 (10 points) Check ONLY ONE correct answer

(a)	The result H of the c	ircuit A —	H is	AIH
	A	1	\Box \overline{A}	0
(b)	With 16 bits, you can	n represent		
	16 numbers	Z 16	= 65536 numbe	rs
	4 numbers	1	hexadecimal dig	git
(c)	The largest decimal	number that can b	e represented usir	g 5 hexadecimal digits is
	5 x 16 -1	5 ¹⁶ -1	16 ⁵ -1	2 ^{5x16} -1
(d)	When you add			
	A= $(0\ 1\ 0\ 1\ 0\ 1)_2$ B= $(1\ 0\ 1\ 0\ 1\ 1)_2$ $70\ 0\ 000\ 0$ $R = (1\ 1\ 1\ 1\ 1$, the result in bir $1)_2$	nary is:	
	\square R = (11111	2) ₂		
	R = (100000	•		
	R = (100000	$(0\ 0\)_2$		
(e)	To display the decin	nal value of one he	exadecimal digit,	we would need
	(one tw	o four	sixteen) 7-d	segment isplays

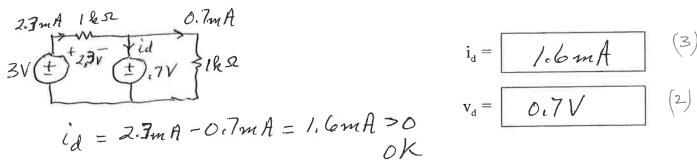
Problem 5 (10 points)

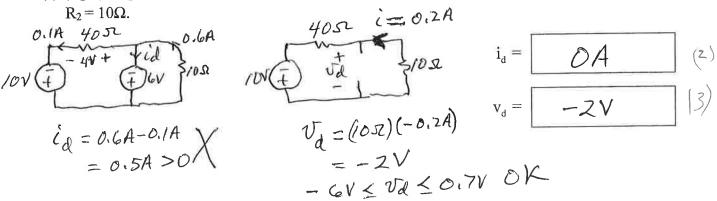


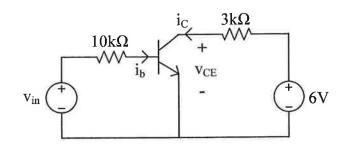
Complete the table below. Hint: To save time, first write a Boolean expression for each of the 7 segments. $a = \overline{x}y$; $b = c = \overline{x}$; d = x; e = F = 1, $g = \overline{y}$


X	Y	a	b	c	d	e	f	g	letter or number displayed
0	0	0	ı	1	0	l	(l	Н
0	1	1	1	1	0	1	l	ı	A
1	0	0	0	0	1	(l	0	L
1	1	0	0	0	1	1	1	O	L

Problem 6 (15 points)


The diode in the circuit below can operate in one of three possible regions depending on the values of V_S , R_1 , and R_2 .


(a) (5 pts) Complete each of the circuit models below by inserting in place of the diode the linear model appropriate for the specified region of operation, for example, resistor, open or short circuit, voltage or current source and its value.


(b) (5 pts) Find the correct circuit model above to solve for i_d and v_d given $V_S = 3V$, and $R_1 = R_2 = 1k\Omega$.

(c) (5 pts) Repeat Part (b) for $V_S = -10V$, $R_1 = 40\Omega$, and $R_2 = 10\Omega$.

Problem 7 (20 points) BJT Transistor Inverter Circuit

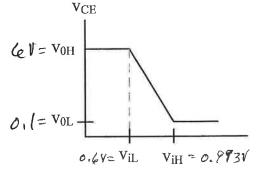
$$\beta = 50$$

$$V_{\text{BEON}} = 0.6V$$

$$V_{\text{CESAT}} = 0.1V$$

$$C_{\text{CESAT}} = 0.1V$$

$$C_{\text{CESAT}} = 0.1V$$


(a) (10 pts) Given $v_{in} = 0.8 + 0.3$ sin ω t volts, use the linear <u>active</u> circuit model to calculate i_b , i_c , and, v_{CE} that is, assume that the transistor does not cutoff or saturate.

$$\begin{split} \dot{l}_{b} &= \frac{\sqrt{in} - 0.6V}{10 \text{ ks}} = \frac{0.2V + 0.3 \text{ sin} \omega t}{10 \text{ ks}} A \\ \dot{l}_{b} &= (20 + 30 \text{ sin} \omega t) \text{ MA} \\ \dot{l}_{c} &= 50 \, \dot{l}_{b} = (1 + 1.5 \text{ sin} \omega t) \text{ MA} \end{split} \quad \begin{aligned} & i_{c} &= 1 + 1.5 \text{ sin} \omega t \text{ MA} \\ \dot{l}_{CE} &= 6V - (3 \text{ ks}) \, \dot{l}_{C} = 6V - 3V - 4.5 \text{ sin} \omega t \text{ V} \end{aligned} \quad \begin{aligned} & v_{CE} &= 3 - 4.5 \text{ sin} \omega t \text{ V} \end{aligned} \quad (4) \end{split}$$

Note: is 20 for some t -> trans, off, and the < CESAT for somet

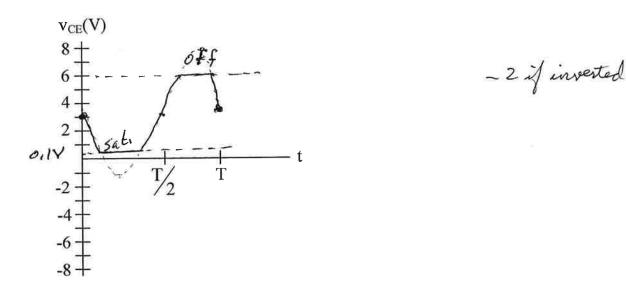
means trans, saturates,

(b) (5 pts) For the above circuit find v_{iL} , v_{iH} , v_{0L} , and v_{0H} .

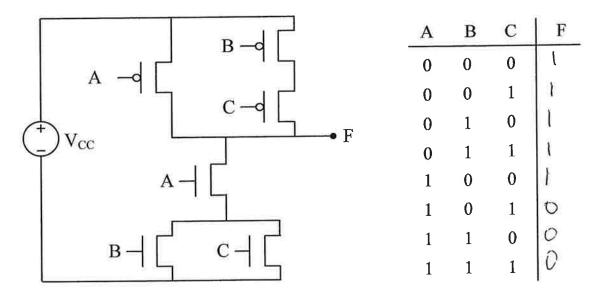
$$U_{OL} = V_{CESAT} = 0.1V$$

$$U_{OL} = 6V$$

$$V_{iL} = V_{BEON} = 0.6V$$
 $V_{iH} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$


$$v_{iL} = \begin{bmatrix} 0.6V \end{bmatrix}$$

$$v_{iH} = 0.993V \qquad (2)$$


$$v_{0H} =$$
 (1)

Problem 7 (continued)

(c) (5 pts) Below plot the actual waveform of v_{CE}(t). Hint: Use the results in Part (b).

Problem 8 (10 points) Complete the truth table for the CMOS logic gate.

-2 each incorrect auswer

-5 if invested truth table

-10 if student guessed

all "15" or all "05".