

Problem 1 (20 points)

Derive the three equations involving unknown voltages V_A , V_B and V_C that would result from applying the <u>node voltage method</u> to the following circuit.

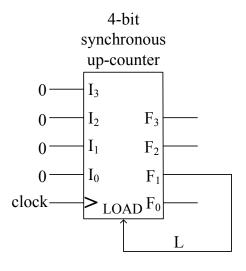
Derive the appropriate equation for each node and enter the coefficients for each equation below.

Node A:

$$V_A + V_B + V_C =$$

Node B:

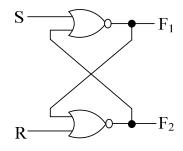
$$V_A +$$
 $V_B +$ $V_C =$


Node C:

$$V_A + V_C =$$

Problem 2 (20 points)

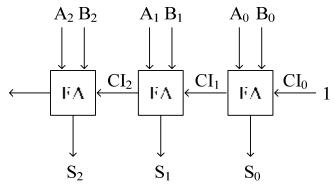
Multiple Choice - no need to show work.


(a) (5 pts) What is the duty cycle of the signal "L"?

Pick one:

100%	20%
50%	10%
33.3%	0%
25%	

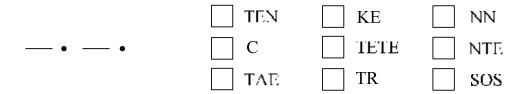
(b) (5 pts)

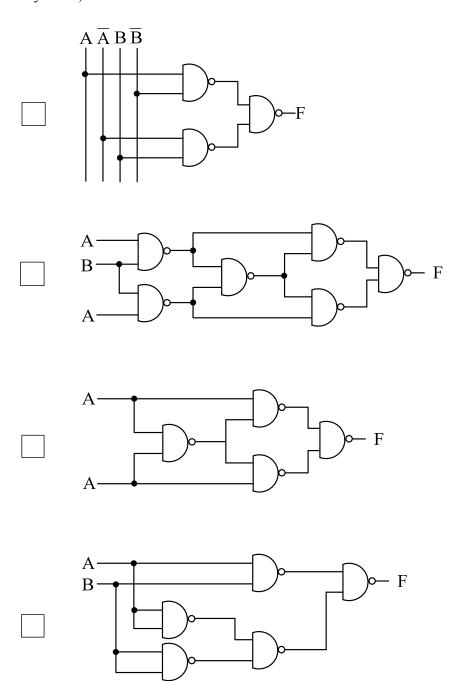


In this circuit, what is F_1 and F_2 while S = 1 and R = 1?

$F_1 = 0, F_2 = 0$	$\Gamma_1 = 1, F_2 = 0$

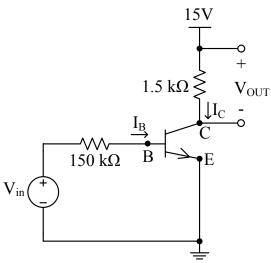
No way to know for sure


(c) (5 pts)


If A = 3, B = 6, $CI_0 = 1$, then

A is $A_2\,A_1\,A_0$, B is $B_2\,B_1\,B_0$, S is $S_2\,S_1\,S_0$

(d) (5 pts) The following is a Morse Code message with prefixes (time gap between letters) removed. Mark all the possible data that might be encoded:



(e) (5 pts) Which of the following circuits correctly implement XOR, i.e. $F = A \oplus B$? (more than one circuit may work)

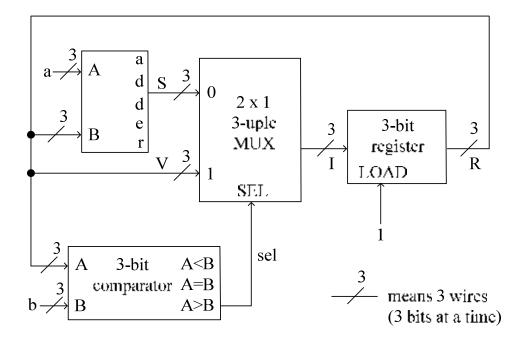
Problem 3 (20 points)

The transistor in the following circuit has $\beta = 85$, $V_{BEON} = 0.7$ V, and $V_{CESAT} = 0.2$ V. Show work.

(a) (4 pts) Determine I_{CMAX} . (note labeling of V_{OUT})

$I_{CMAX} =$	mA

(b) (1 pt) Check the correct answer:

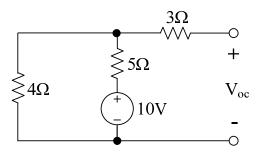

$$V_{out} = V_{CE}$$

$$V_{out} \neq V_{CE}$$

(c) (15 pts) Provide the missing values in the following table.

V _{IN} (V)	Ι _Β (μΑ)	I _C (mA)	V _{OUT} (V)
2			
4			
20			

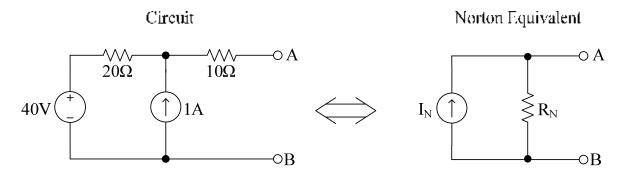
Problem 4 (20 points)


Notice that all binary numbers, except "sel" and "LOAD", are coded on 3 bits.

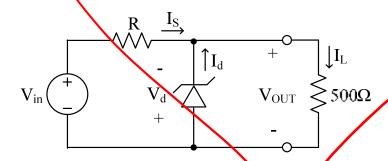
Provide all values in decimal in the table below for consecutive clock pulses.

clock pulse	0	1	2	3
R	3			
a	1	5	3	2
b	5	2	6	7
S				
sel				
I				

Problem 5 (10 points)


Find V_{oc} in the following circuit using the voltage divider rule (VDR). You must show work and use VDR for credit.

Problem 6 (10 points)


Find the values (I_N and R_N) for the Norton equivalent for the circuit below.

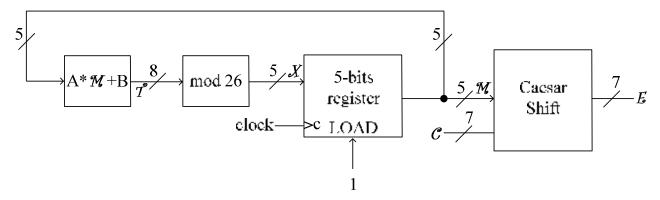
Zener diodes no longer covered_

Problem 7 (20 points)

The Zener diode in the following circuit has a value for V_Z of 5 V.

(a) (5 pts) Determine the value of I_L if the diode is in breakdown.

(b) (5 pts) Determine the value of I_L if the diode is of and $I_S = 3 \text{mA}$.


$$I_L = \boxed{ mA}$$

(c) (10 pts) If V_{in} fluctuates between a low of 10 V and a high of 12 V, determine the maximum value for R that will allow the Zener diode to regulate the voltage V_{int} to the desired value of 5 V.

$$R_{MAX} = \Omega$$

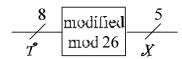
Problem 8 (25 points)

The circuit "ENCRYPT" below encrypts an ASCII message by performing a pseudo-random sequence of Caesar Shifts on each character \mathcal{C} of a message; each clock pulse, one character gets treated (i.e. it is shifted by \mathcal{M} positions to the right to produce another letter of the alphabet).

(a) (6 pts) Find the encrypted letter *E* for the two following independent cases (one example is given). The shift *M* is given in decimal for convenience.

M	1	15	10
$\mathcal{C}(\text{letter})$	F	Н	Т
C(ascii)	1000110		
E (letter)	G		
E(ascii)	1000111		

(b) (9 pts) The two circuit portions on the left (A* M+B and mod 26) implement the pseudorandom generator:

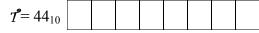

$$X = 7 \mod 26$$
 with $7 = 7 * M + 5$

The message "MANDY" is encrypted by the circuit "ENCRYPT" one character at a time. Provide all numbers in decimal (M, T, X) for each clock pulse, and the resulting encrypted message (one character E each clock pulse):

clock pulse	M	${\mathcal C}$	E	7	X
0	21	M			
1		A			
2		N			
3		D			
4		Y			

Problem 8 cont'd

(c) (10 pts) You will now implement a modified mod 26 circuit.

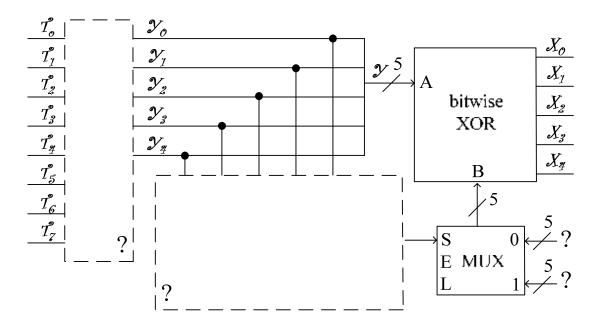

It still produces a number \mathcal{X} between 0 and 25, but it is generated by the process:

- $\mathcal{Y}=7 \mod 32$ (\mathcal{Y} is coded on 5 bits)
- If $\mathcal{Y} \le 25$, then $\mathcal{X} = \mathcal{Y}$ If $26 \le \mathcal{Y} \le 31$, then $\mathcal{X} = 31 - \mathcal{Y}$

To give you an idea on how to design this circuit, do the following examples:

Example 1: (give binary numbers)

Example 2: (give binary numbers)


$$y = 27_{10}$$

$$X = 12_{10}$$

$$X = 4_{10}$$

Draw the <u>two</u> missing circuits (use wires, AND, OR, NOT gates <u>only</u>), and fill the <u>two</u> missing MUX inputs. **Justify your design!**

