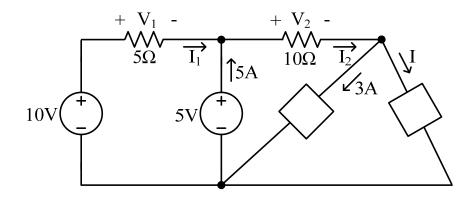
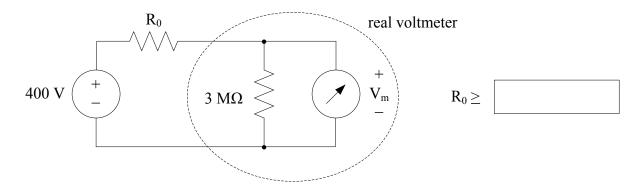

FAID

Problem 1 (9 points)

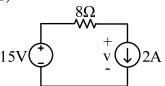

Determine the equivalent resistance between nodes a and b in the circuit below. **Show your work.**

$$R_{ab} =$$

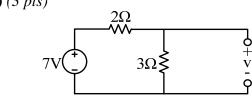

Problem 2 (10 points)

Determine I in the circuit. **Show your work.**

Problem 3 (10 points)


We model a real voltmeter by an ideal voltmeter in parallel with a 3 M Ω resistor. We wish to use the real voltmeter to measure voltages as large as 400 V by attaching a resistor R_0 in series with the real voltmeter, and scaling the reading. Use the Voltage Divider Rule to determine the minimum value of R_0 so that the voltage across the voltmeter remains less than or equal to 60 V, i.e., $V_m \le 60$ V. **Show your work.**

Problem 4 (20 points)


For all questions below, check the one correct answer.

(a) (3 pts)

v < 0


(b) (3 pts)

none of the above

(c) (3 pts)

 \Box I = 20A

 $\Box I = 10A$

I < 0

I = 0

I > 0

none of the above

(d) (3 pts)

(e) (4 pts) A strand of copper wire whose circular diameter is 0.5 mm has a resistance of 0.9 Ω . A copper wire of the same length whose diameter is 0.3 mm has a resistance of

 \square 0.324 Ω

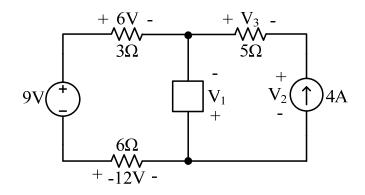
 \square 0.54 Ω

 \Box 1.5 Ω

 \square 2.5 Ω

(f) (4 pts) A voltage of $V_0(t)$ and current $I_0(t)$ at a resistor R_0 vary with time, and their average values are V_{avg} and I_{avg} . They are <u>not</u> in SRS. Which statement is true about the average power at resistor R_0 ?

☐ the resistor is a load


 \Box the magnitude of the power is $|V_{avg} \times I_{avg}|$

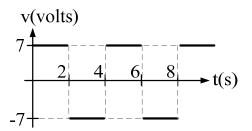
the resistor is a source

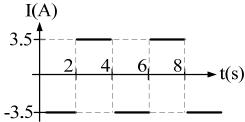
 \square none of these

Problem 5 (16 points)

Use the following circuit for this problem.

(a) (8 pts) Write a KVL equation involving V_1 as the only unknown and then solve for V_1 .


$$V_1 =$$


(b) (8 pts) Write a KVL equation involving V_2 as the only unknown and then solve for V_2 .

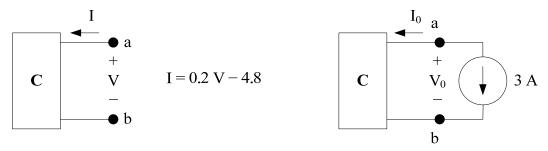
$$V_2 =$$

Problem 6 (15 points)

(a) (10 pts) Assume the two following periodic time-varying signals:

(i) (2 pts) What is the frequency for the signals?

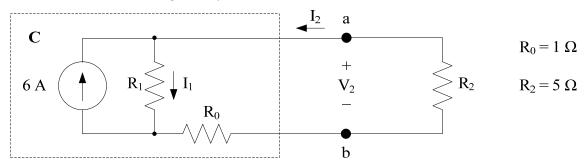
(ii) (3pts) Compute V_{RMS} . Show work.


(iii) (5 pts) Compute the time-averaged power over one period of time. **Show and explain work.**

(b) (5 pts) Prove or disprove that, if V(t) = -RI(t) for any t, then $P_{average} = -V_{RMS} \times I_{RMS}$.

☐ Proved ☐ Disproved

Problem 7 (20 points)


A component **C** is defined by the I-V characteristic on the left below; the current I is in amps, the voltage V is in volts.

(a) (4 pts) Component $\bf C$ is connected to an ideal current source shown on the right above. Determine $\bf V_0$.

(b) Suppose **C** has the structure shown on the left below, and **C** is connected to a resistance R_2 . The values of R_0 and R_2 are given. By KCL, $I_1 = I_2 + 6$.

(i) (8 pts) Show that $I_1 = 3.6$ A. Name the equations that you use.

(ii) (8 pts) Using (i) and the Current Divider Rule, determine the resistance R₁. Show your reasoning.

R ₁ =	
------------------	--