Course Websites

ECE 110 - Introduction to Electronics

Last offered Spring 2025

Official Description

Introduction to selected fundamental concepts and principles in electrical engineering. Emphasis on measurement, modeling, and analysis of circuits and electronics while introducing numerous applications. Includes sub-discipline topics of electrical and computer engineering, for example, electromagnetics, control, signal processing, microelectronics, communications, and scientific computing basics. Lab work incorporates sensors and motors into an autonomous moving vehicle, designed and constructed to perform tasks jointly determined by the instructors and students. Class Schedule Information: Students must register for one lab and one lecture section.

Related Faculty

Subject Area

  • Core Curriculum

Course Director

Description

Integrated introduction to selected fundamental concepts and principles in electrical and computer engineering: circuits, electromagnetics, communications, electronics, controls, and computing. Laboratory experiments and lectures focus on a design and construction project, such as an autonomous moving vehicle.

Preview ECE 110

Goals

ECE 110 is a freshman engineering course. Its goals are to excite students about the study of electrical and computer engineering by exposing them early in their education to electrical components and their application in systems, and to enhance their problem solving skills through analysis and design.

Topics

  • Introduction to Electrical Engineering
  • DC circuits
  • Kirchhoff's Voltage Law, Kirchhoff's Current Law
  • Thevenin and Norton equivalent circuits
  • Current-Voltage characteristics
  • Absorbed power
  • Electronics: Diodes, Transistors
  • Sensors
  • Digital logic through CMOS circuitry
  • Pulse width modulation
  • Photovoltaics

Detailed Description and Outline

Core Topics:

  • Charge, current, voltage, power, and energy
  • Energy storage and dissipation, Ohm's Law, circuit modeling, and schematics
  • Ethics and professional responsibilities
  • Kirchhoff's voltage law and Kirchhoff's current law
  • Series and parallel connections, divider rules, DC circuit analysis
  • Power supplied and absorbed, time-average power, root-mean-square voltage
  • IV characteristics, Thevenin and Norton equivalent circuits, effective resistance
  • Nodal analysis
  • Diodes and diode circuits
  • Bipolar Junction Transistor, BJT IV characteristics and modeling, regions of operation, circuit analysis and operating point, current and voltage amplification
  • Field Effect Transistor, MOSFET IV characteristics and modeling, regions of operation, circuit analysis and operating point, digital logic basics through CMOS and truth tables, FET power consumption
  • Sensors
  • Pulse-width modulation
  • Photovoltaics, photodiodes and solar cells

Computer Usage

All course materials are available via the Internet. Homework problems are primarily computer graded but often some subset are hand graded through a scanned submission on GradeScope. All exams given at the Computer-Based Testing Facility (CBTF) or in a bring-your-own-computer setting. Students must be able to use a Web browser and have adequate access to the Internet. Course provides some basic aspects of scientific computing for data analysis and physical computing for hardware interaction.

Reports

Short lab reports are due for each of the approximate 9 weekly procedural labs individually submitted, weekly team reports that dig deeper into concepts, plus a final team report.

Lab Projects

Thirteen weekly lab meetings lead students from breadboard basics through electronic design.

All labs are designed with team collaboration elements to build community within the student body (3, 5). The students work in pairs week-by-week, switching teammates each week, and in groups of 4 to generate team reports for grading (3). The lab also includes self-selected modules that aid in solidifying principles in electronics (1), aspects of professional behavior and ethics (4), analysis and interpretation of electronic solutions (6), and exploration beyond the standard course material (7).

By the end of lab 1, students have worked with a team of four to generate a team contract conscious of ethical and professional responsibilities in engineering (4, 5). The contract is again reviewed and revised ahead of the final project period (4, 5).

By the end of lab 2, students will know how to use basic DC equipment to build and measure circuits with batteries, power sources, motors, and resistive networks (1). They begin to apply simple circuit building techniques on a solderless breadboard (6).

By the end of lab 5, students have applied Kirchhoff’s voltage and current laws to DC circuits as well as built time-varying circuits and making observations on the oscilloscope (1).

By the end of lab 7, students have constructed Pulse-Width-Modulated generators (1) and use voltage-divider rule to add control to a light-seeking car and then to use engineering judgement to modify the car to light avoidance (6).

By the end of lab 9, students have added controls for both overall speed as well as differential wheel speed (1, 2). Further, they are trained to pay attention to design layout to improve debugging as well as reduce the likelihood of failure (2). The student teams produce a video with a narrative arc to present their working design to a less-technical audience (3).

By the end of the final project, student teams will prepare a project proposed solution (6, 7). They will document the progress of their project while demonstrating teamwork and time management and present the working project while discussing the technological challenges and solutions (3, 5, 6). Finally, they prepare a properly-formatted final report written for a technically-savvy audience (3, 5).

Lab Equipment

ECE110 Electronics Kit custom build for the Department of Electrical and Computer Engineering at the University of Illinois

DC Power Supply

Function Generator

Benchtop and Handheld Multimeters

Oscilloscope

Lab Software

Python and/or Excel for plotting and modeling

Topical Prerequisites

High school physics

Credit or registration in calculus I

Texts

ECE110-customized online course notes

References

621.381OL13i1993 Schwarz, Steven E./Oldham W. G.; Electrical Engineering: An Introduction 2nd ed.

621.3ir91 Irwin/ Kerns; Introduction to Electrical Engineering

621.381En33 Orsak/Wood/Douglas/Munson/Treichler/Athale/Yoder; Engineering: Our Digital Future

621.3R529p2000 Rizzoni, Giorgio; Principles and Applications of Electrical Engineering 3rd ed.

621.3822K952d Kuc, Roman; Digital Information Age: An Introduction to Electrical Engineering

621.3R529p2007 Rizzoni, Giorgio; Principles and Applications of Electrical Engineering, 5th edition

All references are available at Grainger Library Reserves.

Required, Elective, or Selected Elective

Required course for Electrical and Computer Engineering and Industrial and Enterprise Systems Engineering majors.

ABET Category

Engineering Science: 75%
Engineering Design: 25

Course Goals

ECE 110 is a freshman engineering course. Its underlying intent is to excite students about the study of electrical and computer engineering by enhancing their problem solving skills through analysis and design and exposing them early in their education to electronic design projects.

The goal of the ECE110 freshman engineering course is to introduce students in their freshman year to the electrical devices and circuits used in modern power and information systems and to simultaneously develop basic modeling and analytical skills that are used to analyze and design such systems. The devices are taught in a historical context, and, for the most part, the analytical skills are limited to simple algebraic and geometric techniques. It is a 3 credit hour lecture/laboratory course in which students learn about electrical instruments, motors, Pulse-Width Modulation production, diodes, transistors, amplifiers, digital circuits, sensors, feedback control, and power and information systems. In the lecture the students learn (1) how a number of electrical devices and systems work, (2) how to construct simple mathematical behavioral models for these devices, and (3) how to design and perform simple analyses of circuits and systems containing these devices. In the laboratory the students experiment with procedures utilizing these devices, and in the final four weeks of the laboratory student teams complete a design. The design will showcase the lab skills they have been trained for: measurements, modeling, analysis, and design.

Instructional Objectives

Fundamentals (7 lectures): A history of ECE, the motivation. Understand voltage, current, electrical conduction, Ohm's law, power, energy, and be able to compute electrical power and energy for DC voltages and currents; understand the meaning of and be able to compute average power and the rms value of voltage and current for certain classes of time-varying waveforms. IEEE Code of Ethics. Case studies of ethical dilemma in engineering. (1,3,4,7)

DC Circuit Analysis (3 lectures): be able to apply Kirchhoff's laws to a circuit and to compute the circuit's node voltages using the nodal method. (1). Be able to reduce a circuit containing resistors and independent sources to a simple equivalent circuit using series/parallel reduction techniques and the Thevenin and Norton theorems. (1)

Approximate time of Exam 1

Diodes (4 lectures): understand the operation of the semiconductor diode and be able to construct simple piecewise linear models of a diode's i-v characteristics; analyze and design practical clipping, rectifier, voltage regulator, LED, and/or photodiode circuits. (1,2,6)

Transistors (2 lectures): understand how current flow is controlled in the BJT and MOS transistors (1); be able to construct simple piecewise linear models from the input and output characteristics of the common emitter BJT (6); analyze the switching behavior of the BJT inverter and compute its voltage and current gain in the active region graphically and with piecewise linear models (6); determine the operating point of a common-emitter BJT biased in the cutoff, active, or saturated region (1, 6).

Approximate time of Exam 2

Transistors (5 lectures): Solve AC problems with the BJT transistor; understand the circuit-level operation of simple CMOS gates (eg. NOR and NAND); use a simple switch model to construct the truth tables for CMOS logic gates and computation of power usage by a typical microcontroller (1,2,6).

Approximate time of Exam 3

Photovoltaics and Solar Cells (1 lecture): Solve problems involving photodiodes, energy of a photon and the interaction of photons with semiconductor materials, and estimates of monetary savings given solar polar needs of a residential nature (1, 2, 4, 6).

Review Days (3 lectures): identify sources of confusion and error and common misconceptions (muddy points collected from student surveys) and address them prior to the exam (1,2,6).

TitleSectionCRNTypeHoursTimesDaysLocationInstructor
Introduction to ElectronicsAB032463LAB00900 - 1150 T  1001 Electrical & Computer Eng Bldg Jonathon Kenneth Schuh
Judy Hutson
Fatemeh Fardno
Introduction to ElectronicsAB232460LAB00900 - 1150 R  1001 Electrical & Computer Eng Bldg Jonathon Kenneth Schuh
Judy Hutson
Michael Brandon Jamrozy
Introduction to ElectronicsAB352912LAB00900 - 1150 F  1001 Electrical & Computer Eng Bldg Jonathon Kenneth Schuh
Michael Brandon Jamrozy
Pei You
Introduction to ElectronicsAB432470LAB01200 - 1450 M  1001 Electrical & Computer Eng Bldg Jonathon Kenneth Schuh
Sourya Sengupta
Yaokun Shi
Introduction to ElectronicsAB552914LAB01200 - 1450 T  1001 Electrical & Computer Eng Bldg Jonathon Kenneth Schuh
Sharan Mourya Bathala
Yulei Shen
Introduction to ElectronicsAB652910LAB01200 - 1450 W  1001 Electrical & Computer Eng Bldg Jonathon Kenneth Schuh
Bihao Mo
Yulei Shen
Introduction to ElectronicsAB732466LAB01200 - 1450 R  1001 Electrical & Computer Eng Bldg Jonathon Kenneth Schuh
Anuj Keshava Nayak
Sharan Mourya Bathala
Introduction to ElectronicsAB832461LAB01200 - 1450 F  1001 Electrical & Computer Eng Bldg Jonathon Kenneth Schuh
Anuj Keshava Nayak
Navid Elahi
Introduction to ElectronicsAB952913LAB01500 - 1750 M  1001 Electrical & Computer Eng Bldg Jonathon Kenneth Schuh
Dhruv Kathpalia
Pei You
Introduction to ElectronicsABA32456LAB01800 - 2050 T  1001 Electrical & Computer Eng Bldg Jonathon Kenneth Schuh
Emma Erickson
Fatemeh Fardno
Introduction to ElectronicsABB52911LAB01500 - 1750 W  1001 Electrical & Computer Eng Bldg Jonathon Kenneth Schuh
Dhruv Kathpalia
Qihao Wang
Introduction to ElectronicsABC32467LAB01500 - 1750 R  1001 Electrical & Computer Eng Bldg Jonathon Kenneth Schuh
Bihao Mo
Jehyung Ko
Introduction to ElectronicsABE32469LAB01800 - 2050 M  1001 Electrical & Computer Eng Bldg Jonathon Kenneth Schuh
Douglas Miller Belgorod
Pranav Dorbala
Introduction to ElectronicsABF63640LAB01800 - 2050 W  1001 Electrical & Computer Eng Bldg Jonathon Kenneth Schuh
Douglas Miller Belgorod
Emma Erickson
Introduction to ElectronicsAL232471LEC31000 - 1050 M W  1002 Electrical & Computer Eng Bldg Christopher Schmitz
Jonathon Kenneth Schuh
Introduction to ElectronicsAL352909LEC31400 - 1450 M W  1002 Electrical & Computer Eng Bldg Jonathon Kenneth Schuh
Introduction to ElectronicsAL461723LEC31500 - 1550 M W  1002 Electrical & Computer Eng Bldg Gomathi Venugopal
Jonathon Kenneth Schuh
Introduction to ElectronicsZL166368LEC3 -    Umberto Ravaioli