The Internet

These exercises are intended to help you master and remember the material discussed in lectures and explored in labs. In future semesters, we may make some or all of these exercises required, but for now they remain optional. We suggest that you do them as we go over the material, but you may also want to use them to review concepts before the exam.

Please note also that some of the exercises are meant to be done with a calculator, while in exams, we just want you to be able to set up the equations correctly.

We suggest that you use this version rather than the version without solutions to solve the problems before looking at the version with solutions. Many studies have shown that people often trick themselves into believing that they know how to solve a problem if they are presented with the answer before they try to solve the problem themselves.

1. [L5] Construct routing tables for nodes F and N in the network shown below. Each table should contain an entry for every other node in the network. For simplicity, instead of numbering the interfaces, just write the name of the node to which F (or N) should send a packet next. For example, node N should send to A in order to reach A.

2. [L5] Compare the two network topologies below, in which six nodes (blue) are connected with or without routers (green). Briefly give two advantages of each topology over the other, keeping in mind that you are only comparing the other topologies, not "all possible or ideal" networks.

3. [L5] Consider the network graph shown below.
A. Identify a link that can fail without affecting the operation of the network, and use your knowledge of routing to give the new route taken between a pair of nodes (you choose) that normally (before such a failure) uses the failed link. Count hops (cost 1 per link) to pick the routes.
B. Identify a node that can fail without affecting the operation of the network (other than the node itself, of course).
C. Identify a link that is critical-if it fails, some nodes will become disconnected-and a pair of nodes that becomes disconnected if the link fails.

4. [L5] When shared Ethernets were commonplace, a common failure mode occurred in which one machine would start to send signals continuously into the network. Explain why this failure mode was a big problem for shared Ethernets and why it is less important with a star topology.
5. [L6] New ideas in networking have historically been tested globally by implementing the idea within several ASs distributed around the world (for example, on several university campuses) and then using tunneling - a form of encapsulation-to pass through parts of the Internet that do not support the new ideas.

Imagine that UIUC has developed a new Illini Protocol (ILP) and that we are using it within the campus. Two other schools have also adopted ILP locally. ILP packets are not recognized by the Internet. Explain how encapsulation can be used to move ILP packets from UIUC through the Internet to one of the other campuses. Where should the packets be wrapped up, and using what protocol? Where should they be unwrapped and return to being ILP packets?
6. [L6] Encapsulation is not free. Packet headers must also be transmitted over the same physical channels as actual data bits, so larger headers implies longer transmission times (or lower effective throughput). Modern Ethernet, for example, maps every 8 bits into a 10 -bit pattern before translating into signals. Although doing so provides several benefits, including detecting roughly 75% of bit errors, one also loses 20% of the capacity of any Ethernet link. Instead of being able to send a Gigabit in a second, for example, the real data can only be 800 Megabits.

Imagine that you are sending your data over TCP. Assume that TCP headers require 20B, IP headers require another 20B, and Ethernet headers require 20B. Assume also that each Ethernet packet can hold 1560B, which means 1500B of data plus 60B of headers. Finally, the data (including the headers) in the Ethernet packet is $8 \mathrm{~b} / 10 \mathrm{~b}$-coded. Assuming that you are sending lots of data, what is the best you can hope to achieve in terms of a fraction of the link capacity. (If your answer were 60%, for example, that would mean that data could occupy as much as 600 Mbps of a 1 Gbps link.)
7. [L6] Your friend performs an experiment with UDP, sending packets A, B, C, and D-in that order-to another computer across the Internet. The other computer records receiving C, then A, and finally D. B is never received. Explain what properties TCP provides that might improve your friend's results. In particular, what problems shown in the example are solved by TCP?
8. [L6] Explain an example application in which reliable delivery is not an advantage.

