Robot Vision?

The title is from a book by Horn,
- widely used for graduate education
- in computer vision in the 80s and 90s.
Arguably, today’s “vision” applications
- encompass much more
- than just enabling robots.
On the other hand, perhaps
- systems that integrate vision
- but lack actuators for physical motion
- are simply immobile robots.

What are the Steps in Our Cycle?

Let’s start by thinking about the cycle:
sense, compute, actuate, communicate.
Consider monitoring a street intersection.

What is being sensed?
“Visual” information, which could be in various frequencies, using both passive and active sensors.

Computation Requires Several Steps

What about computation?

As before, we need multiple steps:
1. combine sensor data over time
2. identify and classify types of objects/entities
3. need to understand the physics of the things identified
Systems Need to Learn and Predict Behavior

Physics? Huh?
Think about young cats learning to hunt—they need to study the motion of their prey.

If we want systems to act “intelligently,”
- the systems need to learn the differences
- between humans, dogs, squirrels, cars, trucks, and so forth.

Puzzles Play with Our Brain’s Visual Processing

Let’s have some fun. Humans like puzzles.

What do you see in the image on the right?
- Two faces?
- Or a vase?
Most people can see both if they try.

Puzzle Missing Clues Found in the Real World

Why can we see both?
The visual clues our brains use are missing or undermined:
- consistent coloring (forced here)
- depth perception (no depth in image)
- shading (removed here)
- structure (none visible)
- motion (faces move like faces; vases don’t move)

Even a More Realistic Image has Clues

Do you see a vase now?
(You can, but you really have to use your imagination!)

Really colorful vase?
Color, shading, and structure match our idea of a face.
Shading and structure not right for a vase shape.
Tools and Techniques Used by Our Brains

What goes on in our brain to enable us to tell the difference?

Some of everything we talked about:

- edge detection by light/color,
- segmentation into areas of common color,
- use of depth perception and shading to estimate 3D structure, and
- motion tracking to estimate body dynamics.

Can We Be Fooled by Statues?

Body dynamics? Yes...

A realistically colored and shaped dog statue can trick us until we decide that it should have moved but did not.

Look carefully and you may notice that the “fur” doesn’t look like fur; your brain is inferring material properties from lighting.

Modern Sensors Make the Task Easier

As with speech and language, accurate interpretation of vision requires lots of information.

Modern technology does make the task easier. Rather than depending on purely passive sensors (as do humans), we make use of active sensors, such as lidar and radar.

Depth Can be Gauged Passively or Actively

Relative angles convey depth information (we use two eyes).
Depth Perception Adds to Active Sensor Information

Why use depth perception?

Active sensors rely on specific frequencies,
- which may not reflect from all materials,
- and may require correct shape.

For example,
- some radar (NOT mmWave) reflects only from metals;
- stealth aircraft use surfaces angled to avoid reflection.

Feature Registration Enables Fusion of Sensor Data

Modern systems use both
- active sensors generate “point clouds” (with depth labels), and
- passive sensors to generate images.

Specific points on objects
- must be identified and equated (called feature registration)
- in order to combine the sensor information.

Example: which pixels/points correspond to the left front leg of the mailbox?

Feature Identification Enables Recognition of Individuals

Feature extraction / registration
- also used for recognizing things and instances of things.

Example: given a human face,
- extract a set of points:
 - nostrils, eyebrows, lips, and so forth.
- Relative positions of features
- allow matching of the individual face.

Must Understand Motion to Integrate Data Over Time

All sensors may suffer from occlusion:
- an object is partially or completely behind something else.

One “instant” of data
- allows us to build
 - a partial 3D map of the surroundings.

To combine information over time, we must
- identify objects and associate them
 - with types of movement (mailbox: doesn’t move!).
Edge Detection: Find Boundaries Between Segments

Let’s look more closely at one of the first steps: **edge detection**.

In humans,
 - the first level of neurons in the visual cortex
 - performs similar processing,
 - **finding the boundaries between different parts of an image**.

For example, in the image to the right,
 - the yellow region is the “edge”
 - between the vase and the rest of the image.

Filter Captures Notion of a Vertical Edge

Let’s use this 3×3 **filter** of values.*

For each pixel,
 - we center the 3×3 filter
 - over the pixel,
 - multiply each overlapping pixel
 - with a filter value, and
 - sum all of the results.

The sum indicates whether a vertical line appears at that pixel.

*The filter was designed by I. Sobel and G. Feldman in 1968.

Monochrome Pixel Values Represent Image Brightness

Let’s first zoom in to a small image section.

The pixel **values represent brightness**.
Continuing the Computation of One Pixel’s Value

... multiply ...

... and sum ...

Answer is 4!

The Computed Values Highlight Vertical Lines

Do the same for every pixel (called convolution with the filter).

(I duplicated the boundary cells for computation.)

With Measure for Horizontal Lines, Find Line Direction

A second 3×3 filter detects horizontal lines.

By combining the two results, we obtain line strength and line direction at each pixel.

Line Directions (Perpendicular) Identify Segment Bounds

The vectors drawn to the right illustrate the result of the filters (colors are just for clarity).

By finding continuous sequences of adjacent vectors with similar direction, we find curves that split the image.

The curves bound segments of the image, which correspond to objects.
Boundaries Define Segments Corresponding to Objects

Using the boundaries,
◦ we split an image into segments.
◦ In our simple image, there are only two.

Segments
◦ can be matched against object models
◦ to find appropriate labels.

ML Filters (Convolutions!) Can Identify Regions

Or we can use ML to train convolutional filters
◦ that mark regions according to object type,
◦ then look for the regions within the segmented image.
Fewer Object Types Means Easier Identification

As with speech,

* a smaller “vocabulary” of objects
* makes identification easier.

For example, one might omit

* models of lions and elephants
* from many systems.

And almost no systems need to be able

* to spot a rampaging Tyrannosaurus Rex,
* despite the fact that most humans could
* (or so they think).

Some Objects Take Time to Identify Correctly

“At first it seemed a little speck,
And then it seemed a mist;
It moved and moved, and took at last,
A certain shape, I wist.”

—Samuel Taylor Coleridge,
The Rime of the Ancient Mariner

Sometimes, it takes time and observations

* of the motion of an object
* in order to identify it.

ML and Traditional Models May Mix

Towards this end,

* when correct identification matters,
* the ML-based part of the system
* is likely to be backed
* by a more traditional set of object models.

As with our brains,

* these models can be used in both directions:
 * feed shapes and movement into the model
to classify an object, or,
 * given an object’s classification, predict
the kind of motions that it can make.

“Visual” Data Also Fused with Other Types

Finally, “visual” data are likely to be

integrated with other types of information.

Let’s say that my car is following another vehicle, for example.

How do we know when the vehicle in front slows down?

1. Brake lights
2. WiFi notification from vehicle (in future)
3. “Visual” speed/depth change detection
Most Sensors Must be Treated as Unreliable

1. Brake lights
2. WiFi notification from vehicle (in future)
3. “Visual” speed/depth change detection

The first two may fail:
◦ slowing may occur without braking, and
◦ brake lights can go out or be obscured.
◦ WiFi notifications may not arrive, or may not be sent from older cars.

Trust What You See?

1. Brake lights
2. Notification from vehicle (in future)
3. “Visual” speed/depth change detection

Only change detection is reliable
◦ (and even there, we need to have multiple sensors—ours can also fail),
◦ but it is also delayed—takes time to notice.

Safety-Critical Systems Require Safety Envelopes

In practice, systems require a “safety envelope”:
◦ make sure that the car
◦ has enough time to react safely
◦ to changes in the environment.

Safe Decision Making Relies on Layers of Models and Data

Information on slowdown
◦ must be fed into models for motion planning,
◦ which in turn rely on accurate models of vehicle dynamics,
◦ which rely on sensing the vehicle’s load.

Average car weight is 4,000 pounds, with a cargo load of about 1,000 pounds.
That’s a 25% change in mass, assuming humans obey rules.
Vision is a Powerful Tool

Where will modern computer vision take us?

To understand where we might go, let’s look to the past…

Powerful Vision has Appealed for Millenia

Many human mythologies
◦ include beings associated with
◦ enormous powers of vision,
Sometimes through use of many eyes, as with Argos.
Others through extremely powerful sight, as with Heimdall.

What if You Could See Everything, All the Time?

What would you do
◦ if you had eyes everywhere,
◦ all the time?

Obviously, that’s too much information to process oneself.
But now imagine that it is filtered, so you see only what is interesting.
What will you do?

Parenting? Let us Lend an Eye!

PlayCam’s kid-tracking cameras
◦ ensure that your child is safe
from harm and
◦ notifies you instantly of any
unusual activity or behavior!

You can finally relax!
Birdwatching? Do it at Home!

Avianimation used millions of videos
• to develop **behavioral and animation models**
• for even the **rarest species**.

Plus thousands of “**could have been**” species!

All fed directly into the AR/VR system **in your living room**!

Hunting? Fishing?

EarthBalance’s robotic groundskeepers
• **automatically cull** the **excess population** from your lands,
• then prepare and **deliver fresh game** right to your meat locker or freezer.

You’ll never again get mud in your shoe!

Style? Fashion? We’ve Got You Covered!

FashCo integrates billions of videos to definitively **illustrate trends** and **predict future** popular designs,
then identify and create product lines **tailored to your personal tastes**, style, appearance, and preferences.

Plus we offer a range of **appearance-enhancement techniques** (elective surgeries)!

Visual Aids to Memory

Another vision app: “remembering” people.

Remember Gordon Bell recording his life?
He also wanted
• to automatically recognize faces and
• look them up in his Rolodex—
• his personal file of people he has met, what they do, and so forth.
The New Social Norm: This is Your Life!

With today (and tomorrow’s) technology:
◦ Google glass (for example) captures 3D faces of everyone nearby.
◦ Uses face recognition service based on billions of social media photos and videos to identify each person.
◦ Uses personal data service to obtain information about each individual.

Vision Used for Nefarious Purposes

Hi Jan, great to see you again!
I didn’t expect to see you hanging out with Pat after you got married!
That ceremony was great, by the way.
Hawaii is so nice in October!

The Last Phases: Actuation and Communication

Let’s close the loop by returning to the cycle: sense, compute, actuate, communicate.
Once a vision-capable system has interpreted what it sees, it can respond.
Each system will be different:
◦ drive the vehicle safely,
◦ authenticate humans and report unusual activity or deliver messages when human returns home.

Robots Also Need Vision!

Of course, robots will also need vision.
Robots that look and act like humans are not many years away.
Processing visual signals
◦ will be an important part in enabling such robots
◦ to act and communicate with humans.
Whether they look like or unlike us seems to be a matter of choice.
Humanoid Robots: State of the Art

American Society of Mechanical Engineers’ 2020 lineup of humanoid robots and virtual people (below)...

Terminology You Should Know from These Slides

- edge detection
- segmentation
- segments (of an image)
- depth perception
- motion tracking
- point cloud vs. image
- feature registration
- occlusion
- filter
- convolution
- safety envelope

Concepts You Should Know from These Slides

- human use of visual clues to identify objects
- why depth perception is useful together with active sensors
- use of feature extraction to recognize individuals
- why understanding movement is useful to “intelligence”
- integration of information over time and across sensors
- role of safety envelope in ensuring safety