Search is Fundamental to Machine Intelligence

In our last class, we claimed that search is fundamental to intelligence.
We gave some examples:
• tic-tac-toe,
• finding songs containing a musical phrase, and
• identifying animals in photos.

Fast Search Gives the Appearance of Intelligence

If machines
• can solve search problems quickly,
• machines can start to look intelligent.

Search Engines: Find Interesting Content at the Edge

Content is scattered over edge of Internet (orange).
More and more content as Internet grew.
The search engine problem: how to find documents of interest?
Specifically, find words/concepts in a set of documents scattered over the web.
Searching Example: Find the URL in Milliseconds

Example: I want the ECE 101 web page.

But where is it?

Need to search all web pages

and find the right one.

Should be possible: every page has a URL.

Want results in milliseconds:

- studies suggest going beyond 400ms
- starts to lose customers.

Review: How Does Web Search Operate?

Steps in an Internet search service:

1. User searches with phrase \(P \) (“ECE 101”)
2. Search engine finds
 - a large set of scattered documents \(D \)
 - that contain \(P \) or are relevant to \(P \):
 \[D = \{ d_1, d_2, \ldots, d_{203} \} \]
3. Search engine re-orders \(D \) by “relevance” to obtain \(R \):
 - \(R = \{ d_{17}, d_{185}, d_{23}, d_{29}, \ldots, d_{12} \} \)
 - “relevance” could depend on the searcher
 - History of Nike (history professor) -> Greek goddess
 - History of Nike (political scientist) -> Nike missile
 - History of Nike (CEO of company) -> Nike shoes
4. Show results of search quickly.

Search Engines Broken into Five Steps

But how does it work?

Think of it as a five-step process. We’ll talk about each in more detail.

1. Crawl the web to gather billions of documents (text, images, videos).
2. Organize the documents for fast searching, called indexing the documents, to create a set \(S \).
3. Order documents in \(S \) by decreasing reputation. These three occur before anyone does a search.

*like the index in a textbook.
Two More Steps Starting with the Search Phrase

4. Use phrase \(P \) to filter documents in \(S \) in order to find relevant set \(R \).

5. Do another round of reordering
 - based on knowledge of user
 - (search history, YouTube preferences, travel, purchases, and so on)
 - to create the list \(L \) for display (ads go in front!).

Search Engine is Not Using Your Local Data

A student wondered, “What happens if you clear your browsing history?”

- Search engine companies track your history separately.
- Your local copy is not used.
- The companies also use information about
 - your IP address (where are you?),
 - your browser, and
 - more or less anything else that they can deduce by having figured out who you are and consulting their records on your preferences.

Search is Curiously “Smart”

For example, when I look for “ECE 101”
- I get our class page.
- Even if I use “private” browsing (on Google, Bing, or Yahoo).
- Even if I use Duck Duck Go, which says it will not track me (but what about my IP address in Champaign)?

The only search engine that doesn’t give me the class page is Baidu, for which results in English don’t rank highly…

Tracking Can be Beneficial

Sometimes tracking is really useful.

For example, I have a Gmail account.
Imagine that one day,
- I use my credit card
- to buy a ticket to Peru and
- send the itinerary to my email.
Two Examples of Tracking Benefits

Google reads that email and starts looking for things I might want for my trip.

My credit card company sees that charge and tells its fraud unit to expect charges from Peru during that travel, and possibly shortly after it (in case of delayed flights).

Tracking Can Also Lead to Confusion and Embarrassment

These are convenient advantages... ...unless my trip is a surprise for my family, in which case my wife might wonder why ads for services in Peru keep appearing on her browser (same IP address!).

Similarly, you probably share an IP address with your roommates, so some information may be mis-attributed to you, and some ads for you may show up in their browser.

Too Much Tracking Can Generate Bad Publicity

There was a scandal 10-15 years ago centered around Google collecting personal information with their “Google bar” plugin for Windows, MacOS, and so forth.

Europe Has Led the Way in Privacy Regulation

Thanks to European privacy laws (General Data Protection Regulations, or GDPR), companies are being forced to make the data that they have collected on a person available to that person (and editable, and subject to deletion).

As of October 2022, the US has no such laws, but some states have started to formulate them, and some companies do make the same data available to any of their customers.
US Laws Likely to Get Stronger

Some companies may also allow you to ask them to discard information about you. Even if it’s possible, however, the companies may not be inclined to make it easy to find. Compare this problem with the DO_NOT_CALL registry (https://www.donotcall.gov/) for telemarketing.

Can Also Disallow Inclusion of Your Pages in Searches

You can also (in a web page) tell crawlers not to include that page’s content. Not clear that all search engines honor such requests.

First Crawl the Web

First step: crawl the web graph.
As you know,
• a URL lets us access a web page;
• these are the nodes in the web graph.
In each web page are more URLs:
• links to other pages, images, videos, and so forth;
• these are the arcs in the web graph
• (directed: point from one node/URL to another).

Web Crawler Tries to Find All Content in the Web

Starting with the class page,
• we find several links.
• In those pages, we find more,
• And more.
• And more.
Crawler keeps moving.
Tries to find everything.
Second Step: Index the Documents

The gathered documents must be indexed.

Documents need to be easy to find quickly.

How can one accomplish this task?

What if we create a separate folder
- for each word (say in English), then
- place a document in the folder if it contains the folder’s word?

Relevant Information Must be Found Quickly

We still need to find the folders quickly!
For example … find the word “precise” in a dictionary.
No, not an online dictionary / search engine.
This kind…
The words are all sorted alphabetically.
For most of you, it’s been a while, right?

A Challenging Use of Old Technology…?

How can you find “precise” quickly?

Some Constraints on Our Answers

Let’s limit our approach to something that works well for any word.
In other words, we don’t reason
- that “p” should be about 2/3 through the dictionary
- nor make use of a “P” tab in the side (many thicker dictionaries provide them).
Solution? Divide into Halves Repeatedly

Then, ideally,
• Open to exactly the middle.
• If “precise” comes before
 • the words on that page,
 • “precise” must be in the first half.
• If “precise” comes after
 • the words on that page,
 • “precise” must be in the second half.

Start over with half of the book.
Repeat until we find the right page.

Binary Search Finds any Word Fairly Quickly

After 10 steps,
• a dictionary with 22,000 pages,
 • such as the Oxford English Dictionary,
 • is reduced by $2^{10} = 1024$, leaving only
 • about 21.5 pages to search.

After another 7 steps,
• we have only about $\frac{1}{6^{10}}$ of a page
 • in which to find our word.

That approach is called binary search
(because we divide each part into two parts).

Now It’s Time to Sort … But How?

Third step: sort the documents by reputation.
We have billions of documents from the Web.
Which ones are more important, relevant, and/or accurate?
Which ones are less so?
How can we possibly decide?
Maybe we can let the web graph decide for us?

A Page is “Good” if Others Point to It

Idea: if a page is important, other pages will link to it.
For example, links to reference articles: “If you want to understand binary search, you can read about it on Wikipedia:
https://en.wikipedia.org/wiki/Binary_search_algorithm”
Or recommendations: “I took this great class last semester! Check it out:
https://courses.grainger.illinois.edu/ece101/fa2022/”
Or health information: C-U Public Health Department’s COVID tracking pages: https://www.c-uphd.org/covid-case-and-testing-data.html
Importance: Number of Incoming Arcs in the Web Graph

So we can assign “importance”
- based on how many other pages
- link to a page.

But that may not be enough.
For example,
- if CNN has a pointer to a page,
- that fact may be (slightly) more important
- than my web page’s link to the same page.

Links from Important Pages are More Important

When we count incoming arcs,
- we also want to count
- the “importance” of the pages
- that link to a page.

But we should also count
- the “importance” of the pages
- that link to those pages.
- And so on.

Page Rank Captures “Importance” in a Directed Graph

Google developed an idea
- known as page rank
- to capture this idea.

The same approach
- is now popular
- for many purposes
- in graph problems.

Page Rank Intuition: People Walking at Random

Imagine a person at every node (some shown).
Each person
- chooses an outgoing link at random
 (equal probability, independently of past/future decisions)
- and walks to another node.
Page Rank: Expected Number of “People” At a Node

One issue:
◦ some pages include no URLs.
◦ Anyone at such a node
 ◦ can ‘start over’
 ◦ by choosing a new node at random
 ◦ instead of going down a link.
Repeat the process many times, then
◦ count how many people are at a node
◦ to find the node’s “importance” (rank).

Search Indexed Documents for a Given Phrase

Fourth step: filter the documents with phrase P.
Let’s imagine we have folders indexed by words...

British Elizabeth Hurricane Ian Royal Ukraine

We search for “Hurricane Ian.”
What should we do?

Apply Knowledge of User

Fifth step: reorder based on knowledge of user.
This part is proprietary:
◦ how it’s done is specific to the individual company,
◦ as is the information on which it is based, and
◦ they don’t tell anyone the details.
Doing a better job than other companies keeps
◦ advertising revenue coming in and
◦ customers coming back.

Some User-Based Changes Can be Deduced

Nevertheless, we can observe some of the
choices made directly.
Importance increases based on location and
search history:
◦ For example, if searcher comes from
 Illinois.edu, all web pages at UIUC are
 boosted in rank.
◦ If you view the ECE 101 web page two or
 three times a week, all links from that page
 (and those pages, and so forth) are boosted
 in rank.
All Steps Must be Executed Quickly

All of these must be extraordinarily fast.
Use fast computers working in parallel.
10,000 high-end servers working together.
Put common phrases into their own folders (examples: Ukraine war, funny videos, …)
Filter out irrelevant pages early (auto-/randomly-generated, nonsense, spider traps—people trying to defeat crawling, and so forth).
Many years of research and still an interesting problem—is it not a form of intelligence?

Next: Prof. Roy Choudhury on Recommendation Engines

On Wednesday,
◦ we have a guest lecture
◦ by Prof. Romit Roy Choudhury
◦ on recommendation engines.

Terminology You Should Know from These Slides

◦ search engine
◦ Web crawling
◦ indexing
◦ page rank / reputation
◦ filter (documents by keyword)
◦ General Data Protection Regulation, GDPR

Concepts You Should Know from These Slides

◦ problem solved by search engines
◦ search engines’ need for speed
◦ steps in Internet search from both user and ‘anatomy’ (internal) perspectives
◦ personalization vs. privacy in web search
◦ status of privacy laws with regard to user tracking
◦ how page ranks works to compute a page’s importance