Lecture Number |
Topic |
1. |
Introduction |
2. |
Training and Optimization |
3. |
Sequence Modeling |
4. |
Transformer |
5. |
State Space Model |
6. |
Extensions of Transformer |
7. |
Encoder-Only and Encoder-Decoder Model |
8. |
Decoder-Only Model (GPT) |
9. |
Scaling Law and Emergent Abilites |
10. |
Prompt Engineering |
11. |
LLM Safety |
12. |
Hallucination |
13. |
Retrieval Augmented Generation |
14. |
Instruction Tuning - Methods |
15. |
Instruction Tuning - Data Aquisition |
16. |
Fine-Tuning and Evaluation |
17. |
Resource Efficient Finetuning |
18. |
RLHF Basics |
19. |
RLHF Algorithms |
20. |
Open-source LLMs |
21. |
LLM with Tools |
22. |
Planning and Agents |
23. |
LLM Data Generation and Distillation |
24. |
Coding LLM |
25. |
Math LLM |
26. |
Multimodal Embedding |
27. |
Multimodal LLMs |
28. |
GPU Acceleration Techniques (Self Study) |
29. |
Probing and Interpretability (Self Study) |