| Lecture Number | Topic |
|---|---|
| 1. | Introduction |
| 2. | Training and Optimization |
| 3. | Sequence Modeling |
| 4. | Transformer |
| 5. | State Space Model |
| 6. | Extensions of Transformer |
| 7. | Encoder-Only and Encoder-Decoder Model |
| 8. | Decoder-Only Model (GPT) |
| 9. | Scaling Law and Emergent Abilites |
| 10. | Prompt Engineering |
| 11. | LLM Safety |
| 12. | Hallucination |
| 13. | Retrieval Augmented Generation |
| 14. | Instruction Tuning - Methods |
| 15. | Instruction Tuning - Data Aquisition |
| 16. | Fine-Tuning and Evaluation |
| 17. | Resource Efficient Finetuning |
| 18. | RLHF Basics |
| 19. | RLHF Algorithms |
| 20. | Open-source LLMs |
| 21. | LLM with Tools |
| 22. | Planning and Agents |
| 23. | LLM Data Generation and Distillation |
| 24. | Coding LLM |
| 25. | Math LLM |
| 26. | Multimodal Embedding |
| 27. | Multimodal LLMs |
| 28. | GPU Acceleration Techniques (Self Study) |
| 29. | Probing and Interpretability (Self Study) |