if exist
 Set ans for (z, x) to yes
 remove (z, x) from E
else break
}

Total time: # oracle calls = \(O(r^3 + K) \)

\[\Rightarrow O\left((r^3 + K) \cdot T\left(\frac{n}{r}\right)\right) \]

\[\leq O\left((r^3 + n^2) \cdot T\left(\frac{n}{r}\right)\right) \]

Set \(r = n^{4/3} \) \[\Rightarrow O\left(n^2 \cdot T\left(n^{1/3}\right)\right) \]

\[\leq O\left(n^2 \cdot (n^{1/3})^{3-s}\right) \]

\[= O\left(n^{3\cdot \frac{5}{3}}\right). \] \(\Box \)

Last Time:

APSP \(\rightarrow (\min^+)\)-MM

(\(\min^+\))-MM-Decis \(\equiv \) NWT (in AE ver)

\((*) \) highlight

NWT in Repeat-One

today

NWT in orig

\(\min \)-wt triangle
Step 3. Reduce NWT in original vers. \rightarrow NWT in orig vers.

Suppose NWT could be solved in
\[T(n) = O(n^{3-\delta}) \] time.

To solve Report one NWT:

Divide \(X \) into \(X_1, X_2 \) of size \(\frac{n}{2} \)

\(Y = Y_1, Y_2 \)

\(Z = Z_1, Z_2 \)

for each \(i, j, k \in \{1, 2\} \)
call oracle to decide 3 neighbour triangle in \(X_i \times Y_j \times Z_k \)
if yes, recurse in \(X_i, Y_j, Z_k \) & exit

Runtime
\[T'(n) \leq T'(\frac{n}{2}) + 8 \frac{T(\frac{n}{2})}{O(n^{3-\delta})} \]
\[\Rightarrow T'(n) \leq O(n^{3-\delta}) \]

Reduce NWT \rightarrow Radius:

Suppose graph radius could be computed
\[T(n) = O(n^{3-\delta}) \] time.

To solve NWT for a given weighted tripartite graph \(G = (X \cup Y \cup Z, E) \):

build new graph \(G' \):

\[M \geq \max_{e \in E} |w(e)| \]
Compute radius of G by oracle in $T(\omega(n))$ time
\[\leq O(n^{3.5}) \]

Claim

G has neg-wt triangle $\iff \hat{G}$ has radius $< 3M$.

Pf: (\Rightarrow) Suppose $x_i y_j z_k$ is neg-wt tri in G.

\[\text{dist from } x_i \text{ to any vertex } x' \in \hat{G} < 3M. \]

(\Leftarrow) Suppose G has radius $< 3M$. Center must be in X_1, say it is x_i.

\[\text{dist from } x_i \text{ to } x'_i < 3M \]

\[= \exists y_j, z_k, (w(x_i, y_j) + M) + (w(y_j, z_k) + M) + (w(z_k, x_i) + M) < 3M \]

\[= \exists \text{ neg-wt tri in } G. \qquad \Box \]

Open: $\text{APSP} \rightarrow \text{diam}$.

Problem Zero-Weight Triangle (ZWT)

Given tripartite graph,

\[-v \quad \leq y \leq z \quad \text{st.} \]
Given tripartite graph,

\[\exists x \in X, y \in Y, z \in Z \text{ s.t.} \]
\[w(x,y) + w(y,z) + w(z,x) = 0. \]

Thm: for int wts,

if \(ZWT \) has \(O(n^{3.8}) \) alg'm,

then \(APSP \) has \(O(n^{3.8}) \) alg'm.

Pf:

Reduce \(NWT \rightarrow ZWT \):

Lemma (turn ineq. to equality) given 3 wts \(a, b, c \)

\[a + b + c > 0 \]

\[\iff \exists i, \left\lfloor \frac{a}{2^i} \right\rfloor + \left\lfloor \frac{b}{2^i} \right\rfloor + \left\lfloor \frac{c}{2^i} \right\rfloor = 1 \text{ or } 2 \text{ or } 3 \text{ or } \ldots \text{ or } 7. \]

Pf: (\(\leq \)) Suppose \(\left\lfloor \frac{a}{2^i} \right\rfloor + \left\lfloor \frac{b}{2^i} \right\rfloor + \left\lfloor \frac{c}{2^i} \right\rfloor \in \{1, \ldots, 7\} \)

\[\Rightarrow \frac{a}{2^i} + \frac{b}{2^i} + \frac{c}{2^i} > 0 \]

\[\Rightarrow a + b + c > 0. \]

(\(\geq \)) Suppose \(a + b + c > 0 \).

\[2^{i+2} \leq a + b + c < 2^{i+3} \quad (i \geq 0) \]

\[0 < \frac{a+b+c}{2^i} - 3 < \left(\left\lfloor \frac{a}{2^i} \right\rfloor + \left\lfloor \frac{b}{2^i} \right\rfloor + \left\lfloor \frac{c}{2^i} \right\rfloor \right) \]

\[\leq \frac{a+b+c}{2^i} < 8 \quad \Rightarrow \]

Suppose \(ZWT \) could be solved in \(T(n) \) time.

\(\in \Theta(n \log n) \) time.
Suppose ZWT could be solved in $T(n)$ time.
Then NWT $\in \Omega(T(n) \log U)$ time.

Summary:

ZWT \(\leftarrow\) \(\text{(later)}\)

3SUM

\(\text{min+} \rightarrow\)

radius,

NWT

\((\text{min},+)\text{-MM}\)

\(\uparrow\)

APSP

Next:

Cond. LBs from \((\text{min},+)\text{-Convolution}\)

Problem

Given \(a_0, \ldots, a_{n-1}, b_0, \ldots, b_{n-1}\),

compute \(q_k = \min_i (a_i + b_{k-i})\)

Conjecture

No $O(n^{2.5})$ algorithm for \((\text{min},+)\text{-Convol.}\)