Dynamic Convex Hull in 2D

Static: $O(n \log n)$ time

* e.g. Graham's scan

Dynamic?

- Insert pt
- Delete pt
- Query (e.g. find extreme pt along dir)

$O(\log n)$ time?

Difficulty - each insert/delete can cause $\Omega(n)$ changes to CH.

Suffice to consider upper hull (UH)

by duality: equiv. to lower envelope of lines

Apply - compute k-level of n lines

If k-level has h vertices,

- $O(h)$ insert/delete queries
- $O((k+h) \log n)$ time alg.?
Warm-Up: Insert-Only

- Insert reduces to finding 2 tangents
 \[O(\log n) \text{ time by binary search} \]
 \[\{ \text{split/concatenate lists} \} \quad O(\log n) \]
 \[\Rightarrow \quad O(\log n) \text{ time} \]

Overmars - van Leeuwen '80: Fully dynamic

Lemma

Given 2 vertically separated UHs A, B, we can find the bridge between A, B in \[O(\log n) \text{ time} \]

Pf:
- Dual of bridge
- \[x = 0 \]

\[M_B \quad M_A \]
by careful binary search

Case 1. \times_{mb}

Case 2. \times_{mb}

Case 3. \times_{mb}

Case 4. \times_{ma}

$\Rightarrow \leq 2 \log n$ iterations.

idea: hull tree

divide by median x

recursive on left & right

store bridge

$\Rightarrow O(n)$ space

extreme-pt query: $O(\log n)$ time

insert/delete(p): if p is on left side
insert/delete on left subtree
Insert/delete(p):

- If p is an root,
 - Insert/delete on left subtree
 - Delete on right

$\Rightarrow \quad \boxed{O(\log^2 n)}$ time

Issue - balancing?

Option 1 - weight balance

- If left subtree size \Rightarrow c. right subtree size
- Rebuild subtree

\Rightarrow amortization

Option 2 - rotation

AVL/Red-black tree - $O(1)$ rotations per insert/delete

Improvements:

Chatelle '83: $O(\log n)$ update time but delete-only (null tree w. linear search & amort.)

Fully dynamic

C.'99: $O(\log^2 n)$ amort. update, $O(\log n)$ extract/query

Brodal-Jacobsen '02: $O(\log n)$ amort. update, $O(\log n)$ extract/query
idea. Start w. delete-only apply the logarithmic method to support insert

query time increases to \(O(\log^2 n) \)

Open Qs:

- dynamic convex hull area in 2D
 \(O(\log n) \) update

- dynamic convex hull in 3D
 \(O(\log^4 n) \) update,
 \(O(\log^2 n) \) extreme-pt query [C.'19]

- dynamic convex hull volume in 3D
 \(\widetilde{O}\left(n^{11/12}\right) \)