Rmk: if t is const, $O(n)$ time.

Consequences: 1. Space/time tradeoff

Query time

$$O\left(\left(\frac{\log s}{s} \right)^{t+\varepsilon} \log s \right)$$

$$\approx O\left(\frac{n}{\sqrt{m}} \right)$$

2. Want to answer n queries for n pts in 2D

$$O^{*}\left(m + n \cdot \frac{n}{\sqrt{m}} \right)$$

Set $m = n^{4/3}$

$$= O^{*}\left(\frac{n^{4/3}}{n^{1/2}} \right)$$

3. Related to Szemerédi-Trotter Theorem '83
3. Related to Szemerédi-Trotter Thm '83

in combinatorial geometry:

given \(n \) lines \(\& \) \(n \) pts in \(\mathbb{R}^2 \),

\[\# \text{ pairs } (p, q) \text{ with } p \text{ incident on } l \]

is \(\mathcal{O}(n^{4/3}) \)

Algorithmic version

"Hopcroft's Problem"

\[\text{5 lines} \]
\[\text{5 pts} \]
\[12 \text{ incidences} \]

\[\text{Pf: } I(n, m) = \max \# \text{ incidences for } n \text{ lines, } m \text{ pts} \]

Then \(I(n, m) = \mathcal{O}(n^2 + m) \)

First attempt: divide lines into \(r \) groups of \(\frac{n}{r} \) lines each

\[I(n, n) = \mathcal{O}(r \cdot I(\frac{n}{r}, \frac{n}{r})) = \mathcal{O}(r \cdot (\frac{n^2}{r^2} + n)) = \mathcal{O}(n^{3/2}) \]

Set \(r = \sqrt{n} \)

Apply Cutting Lemma

\(\Rightarrow \) \(\mathcal{O}(r^2) \) cells each intersected by \(\leq n/r \) lines
Subdivide cells s.t. each has $\leq \frac{n}{r^2}$ pts

\[\Rightarrow \text{ still } O(r^2) \text{ cells} \]

Then $I(n, n) = O(r^2) \cdot I\left(\frac{n}{r}, \frac{n}{r}\right)$

by duality

\[= O(r^2) \left(\frac{n^2}{r^2} + \frac{n}{r^2} \right) \]

\[= O(r^2) \left(\frac{n^2}{r^4} + \frac{n}{r^2} \right) \]

Set $r = n^{\frac{1}{3}}$ = $O\left(n^{\frac{4}{3}}\right)$

4. also related to Erdős unit distance problem:

given n pts in \mathbb{R}^2,

pairs of distance exactly 1 unit is $O\left(n^{\frac{4}{3}}\right)$

still open!

Current lower bd:

\[\Omega\left(n \left(1 + \frac{c}{\log \log n}\right)\right) \]

implies reduces to incidences between pts & unit circles
5. **nonlinear range searching**
 by linearization

 e.g. count # pts inside query circle in 2D

 \[
 \text{find } (x, y) \in P \text{ s.t.} \quad \sqrt{(x-q_x)^2 + (y-q_y)^2} \leq q_r \\
 \text{i.e. } x^2 + y^2 - 2q_x x - 2q_y y + q_x^2 + q_y^2 - q_r^2 \leq 0 \\
 \text{linear in } x, y, z. \\
 \text{reduces to 3D halfspace range counting}
 \]

6. **multilevel partition trees**

 e.g. count # line segments intersecting query line in 2D

 \[
 \text{want all } a_i \text{ with } \overline{a_i} \text{ above } a \text{ and } b_i \text{ below } a \\
 \text{partition tree over the } b_i's \\
 \text{similar to range tree}
 \]
Partition tree over the axis

\[S(n) = t S\left(\frac{n}{t}\right) + O(t S_2(n)) + \text{const} \]

\[\Rightarrow \quad O(n \log n) \quad \text{by binary search} \]

\[Q(n) = O(V + E) \cdot O(\frac{n}{t}) + O(t S_2(n)) \]

\[\Rightarrow \quad O^*(Vn) \]

What about halfspace range reporting?

2D emptiness?

O(n) space, O(log n) time by binary search

3D emptiness?