Triangle Range Search

Cutting Lemma: Given \(n \) lines \(L \) in \(\mathbb{R}^2 \), can cut \(\mathbb{R}^2 \) into \(O(r^2) \) cells such that each cell intersects \(\leq \frac{n}{r} \) lines.

\[\Rightarrow O(n^{d+\varepsilon}) \text{ space, } O(\log n) \text{ time} \]

(Matrak '81)

Partition Thm: Given \(n \) pts \(P \) in \(\mathbb{R}^2 \), can partition into \(t \) subsets \(P_1, \ldots, P_t \) each with \(\approx \frac{n}{t} \) pts & find \(t \) cells \(\Delta_1, \ldots, \Delta_t \) with \(P_i \subseteq \Delta_i \)

such that any line crosses \(O(V_{\varepsilon}) \) cells or \(O(t^{1-\varepsilon}) \)

\[\Rightarrow O(n) \text{ space, } O(\sqrt{n} \log \frac{O(n)}{n}) \text{ time} \]

\(n^{1-\varepsilon} \)

Proof of Partition Thm:

Suffices to prove crossing \(\leq m \) for a finite set \(L \) of "test" lines.

\(m = O(n^2) \) not difficult.

By considering lines thru 2 pts with more work, can reduce \(m = O(\varepsilon) \)
(with more work, can reduce \(m = O(\varepsilon) \))

First Attempt:

1. Apply Cutting Lemma to \(L \) with \(r = V \)
 \[
 \Rightarrow \text{ # cells } = O(r) = O(\varepsilon) \quad \text{ }^{\text{1/2}}
 \]
2. Subdivide cells to ensure each with \(\leq \frac{t}{V} \) pts
 \[
 \Rightarrow \leq t \text{ vertical cuts}
 \Rightarrow \text{ # cells remains } O(t)
 \]

Analysis: total crossings between lines & cells

\[
O(t \cdot \frac{m}{V}) = O(m \cdot \varepsilon)
\]

\[
\Rightarrow \text{ average # crossings per line } = O(V \cdot \varepsilon)
\]

But how to turn average to max?

Idea: multiplicative weight update (Welzl '88)

Iterative reweighting

Matoušek's Alg'm:

- Define multiset \(\hat{L} \), initialize to \(L \), all multiplicities = 1
 - "weight" / "importance"

for \(i = t, \ldots, 1 \) do:

 // assume \(\frac{m}{V} \) pts remaining

 1. Apply Cutting Lemma to \(\hat{L} \) with \(r = \sqrt{t} \)
 \[
 \Rightarrow \text{ # cells } = O(r^2) \approx i
 \]
 2. Pick cell \(\triangle \) with \(\geq \frac{t}{V} \) pts
 3. Shrink \(\triangle \) to have exactly \(\frac{t}{V} \) pts \(P_i \),

\(\triangle \)
3. shrink Δ_i to have exactly $\frac{n}{k}$ pts P_c.
4. for each $\ell \in L$ crossing Δ_i,
double multiplicity of ℓ in $\hat{\ell}$

$e_i = 17$

Analysis: before iteration i,

let $m_i = |\hat{\ell}|$ (multiplicity included)

$e_i = |\{ \ell \in \hat{\ell} : \ell \text{ crosses } \Delta_i \}|$

Know $e_i \leq \frac{m_i}{r_i} \approx \frac{m_i}{\sqrt{i}}$.
by Cutting Lem.

$\Rightarrow m_{i+1} \leq m_i + e_i \leq \left(1 + \frac{1}{r_i}\right) m_i$

$\Rightarrow m_{\text{final}} = m_0 \leq \left(1 + \frac{1}{r_1}\right) \left(1 + \frac{1}{r_2}\right) \cdots \left(1 + \frac{1}{r_i}\right) m$

$= m \prod_{i=1}^{t} \left(1 + \frac{1}{r_i}\right)$

$\leq m \prod_{i=1}^{t} e^{1/r_i}$

$\leq m e^{\sum_{i=1}^{t} \frac{1}{r_i}} \approx m e^{O(1/k)}$

$\frac{e^{t}}{e^{r}} \approx O(e^{r})$

But $m_{\text{final}} = \sum_{\ell \in L} (\text{final multiplicity of } \ell)$

$= \sum_{\ell \in L} 2$ (Crossing # of ℓ)
\[\forall \mathcal{L}, \quad \text{crossing # of } \mathcal{L} \leq \log_2 m + \sqrt{m} \]

\[\mathcal{O}(\log m + \sqrt{m}) \]

Remark - if \(t \) is const, \(\mathcal{O}(n) \) time.

Consequences - space/time tradeoff

- build partition tree
 - when \(t \) pts \(\leq s \),
 - build cutting tree

\[\Rightarrow \text{space } \mathcal{O}(n + \frac{n}{s} \cdot s^{2+\varepsilon}) \]

\[= \mathcal{O}(ns^{1+\varepsilon}) \]

\[\approx \mathcal{O}(m) \quad \text{for } s = \frac{m}{n} \]

query time:

\[\mathcal{O}\left(\left(\frac{n}{s}\right)^{1+\varepsilon} \log s\right) \]

\[\approx \mathcal{O}\left(\frac{n}{\sqrt{m}}\right) \]