Method 3: Trapezoid Tree (Preparata '81)

Use a tree where cells are trapezoids instead of slabs.

Given \(n \) segs intersecting trapezoid \(T \),
if no long segs,
divide \(T \) by median \(x \)
else
divide \(T \) by all long segs

\[\Rightarrow O(n \log n) \text{ space as before} \]
query time \(O(\log n \cdot \log n) = O(\log n) \)

lemma
Given \(m \) elements \(y_1, \ldots, y_m \) in 1D,
with weights \(w_1, \ldots, w_m \geq 1 \), \(W = \sum w_i \)

Can find \(\text{pred} y_i \) of any query \(p \) in time \(O(\log \frac{W}{m} + 1) = O(\log W - \log m + 1) \)
Can find your \(z \) in time \(O \left(\log \frac{W}{w} + 1 \right) = O \left(\log W - \log w + 1 \right) \)

Proof Sketch: weighted/biased binary search

At each multidegree node, use lemma, with weight \(\text{weight}(T) = \# \) leaves in \(T \)'s subtree

\[
W_0 = O(n \log n)
\]

\[
= O \left(\log W_0 + \log n \right)
\]

\[
= O \left(\log n \right)
\]

Remark: can directly convert tree to binary

- Related to **BSP** tree (binary space partition)
Runk - Seidel-Adamy’98: any tree data structure (in some model) for 2D point location requires $O(n \log n)$ space

Method 4: **Persistent Search Tree** (Samak, Tarjan’86)

back to Method 0 (slab method)

Sweep from left to right
- maintain y-sorted list L
 - if we hit left endpt, insert to L
 - if right endpt, delete from L

can use balanced search tree for L
 - insert/delete/search in $O(\log n)$ time

To answer query,
- need to do prev search in a past version of L

Persistence - remember history st.
 - we can query in past

One implementation of persistent search tree?
 - path copying

Rotations are similar
(can avoid by pre-sorting all segs by y)
query time \(O(n \log n + \log n) = O(n \log n) \)

Space \(O(n \log n) \)

Preproc time \(O(n \log n) \)

(Rank): Sanak-Tarjan improves space to \(O(n) \) by limited path copying

(Rank): Technique general

(bounded degree property)

Method 5: Planar Separators (Lipton-Tarjan '77)

1D

2D

Thus: Given a triangulated planar graph \(G \) with \(n \) faces, can find subset \(R \) of \(O(n) \) edges that divide \(G \) into 2 regions each with \(\leq \frac{2}{3}n \) faces.