Homework 3 (due Nov 10 Wednesday 5pm)

Instructions: see previous homework.

1. [50 pts] Given a set P of n points in \mathbb{R}^{d} for a constant dimension d, a k-hop c-spanner is a subgraph H of the complete graph with vertex set P such that for every $p, q \in P$, there exists a path from p to q in H with at most $k+1$ edges and total length at most $c\|p-q\|$ (in the Euclidean metric). Describe an algorithm to construct a 1-hop c-spanner with $O(n \log n)$ edges for some constant c.
[Hint: one approach is to use shifted, balanced quadtrees; another approach is to use shifted Z-ordering.]
[Bonus: make c arbitrarily close to 1 . Also, how many edges for a 2 -hop spanner?]
2. [50 pts] In the discrete 1-median problem, we are given a set P of n points in 2D, and want to find a point $q^{*} \in P$ that minimizes the sum of Euclidean distances $\sum_{p \in P}\left\|p-q^{*}\right\|$. (Note that q^{*} must be in P.) There is a naive $O\left(n^{2}\right)$-time exact algorithm. Describe a more efficient approximation algorithm to solve the problem.
[Note: $O(n \log n)$ run time and constant approximation factor would be fine, though $O(n)$ time and $1+\varepsilon$ approximation would be even better (and worth bonus points).]
[Hint: one approach is to change the metric...]
