Homework 2 (due Oct 20 Wednesday 5pm)

Instructions: see previous homework.

1. [30 pts] Given a convex polygon P with n vertices with integer coordinates in $[U]^{2}$, we want to build a data structure so that for any query line ℓ, we can quickly compute the intersection of P and ℓ (there are either zero or two intersection points).
Show that this problem can be solved with $O(n)$ space and $O(\sqrt{\log U})$ query time. (Note that $O(\log n)$ time is not difficult, by binary search.)
Hint: focus on computing the left intersection point. Use duality and a result from class.
Research questions (both open, I think): is $O\left(\log ^{1 / 2-\varepsilon} U\right)$ time possible with $O(n)$ space? what about the 3D case, where P is a convex polyhedron?
2. [30 pts] We are given a set P of points and a set H of halfplanes in 2D. The depth of a point p is defined as the number of halfplanes of H containing p. We want to find the maximum depth $D(P, H)$ over all points in P.
Present a dynamic data structure that maintains the maximum depth $D(P, H)$ under insertions and deletions of halfplanes in H. Each insertion/deletion should take sublinear time.
Hint: use a modified partition tree.
3. [40 pts]
(a) [30 pts] Given n (possibly intersecting) line segments in 2D, we want to build a data structure so that for any query point q, we can count the number of line segments below q.
Describe a solution with $O(n)$ or $O(n \log n)$ space and sublinear query time.
Hint: combine a segment tree with partition tree.
(b) $[10 \mathrm{pts}]$ Given n (possibly intersecting) triangles in 2 D , we want to build a data structure so that for any query point q, we can count the number of triangles containing q.
Hint: this should be easy, using (a) as a black box.
