
CS 598TMC, Fall 2020
Timothy Chan

Homework 4 (due Dec 2 Wednesday 10:00am (CT))

Instructions: see previous homework.

1. [34 pts] Consider the following problem called dynamic strong connectedness: decide whether
a directed graph with m edges is strongly connected (i.e., for every two vertices u and v, there
exists a path from u to v and a path from v to u), under insertions and deletions of edges.
You will prove a conditional lower bound for this problem.

(a) [17 pts] Recall the set intersection query problem: build a data structure for a collection
of sets S1, . . . , S` ⊆ [N] with total size M =

∑
i |Si|, so that given any i and j, we can

quickly enumerate all elements in Si ∩ Sj . In class, we have shown that if there is

a data structure that could answer Õ(n3/2) set intersection queries with total output
size Õ(n3/2) for an input with M = Õ(n3/2) and N = Õ(n) in Õ(n2−δ) time for some
constant δ > 0, then integer 3SUM could be solved in Õ(n2−δ

′
) time.

Now consider the set disjointness query problem: build a data structure for sets S1, . . . , S` ⊆
[N] with total size M =

∑
i |Si|, so that given any i and j, we can quickly decide whether

Si∩Sj = ∅. Show that if there is a data structure that could answer Õ(n3/2) set disjoint-

ness queries for an input with M = Õ(n3/2) and N = Õ(n) in Õ(n2−δ) time for some
constant δ > 0, then integer 3SUM could be solved in Õ(n2−δ

′
) time for some constant

δ′ > 0.

Hint: create new sets Si ∩ [0, N/2), Si ∩ [N/2, N), Si ∩ [0, N/4), etc. Queries may be
given online.

(b) [17 pts] Show that if there is a data structure for dynamic strong connectedness that
supports edge insertions and deletions in O(m1/3−δ) time for some constant δ > 0, then
integer 3SUM could be solved in Õ(n2−δ

′
) time for some constant δ′ > 0.

Hint: to reduce set disjointness to dynamic strong connectedness, build a tripartite
directed graph, and add some extra vertices and edges. . .

2. [34 pts] In class, we described an O(n2/ log2 n)-time algorithm for solving the LCS (longest
common subsequence) problem when the alphabet size is constant.

Present a slightly subquadratic algorithm for LCS that works even when the alphabet size is
large. Aim for near O(n2/ log2 n) time, ignoring log log n factors. (Partial credit for a slower,
near-O(n2/ log n)-time algorithm.)

Hint: To get near O(n2/ log2 n), use two levels of blocking. Divide into “macro-blocks” of size
w′′, and divide each macro-block into “micro-blocks” of size w′, for some choice of w′′ > w′.
For each pair of macro-blocks, reduce the alphabet size to O(w′′). . .

1

3. [32 pts] Consider the following variant of the 3-point collinearity problem: given a sequence of
n points p1, . . . , pn in two dimensions, decide whether there exist i and j such that pi, pj , pi+j
lie on a common line.

Assuming that the points have integer coordinates, describe a (randomized) algorithm that
solves the problem in slightly subquadratic time. Aim for near O(n2/ log2 n) time, ignoring
log log n factors.

Hint: modify the algorithm from class for integer convolution-3SUM. Note that three points
(x1, y1), (x2, y2), (x3, y3) are collinear iff (x2 − x1)(y3 − y1) = (x3 − x1)(y2 − y1).

2

