CS 598TMC, Fall 2020
Timothy Chan

Homework 1 (due Sep 30 Wednesday 10:00am (CT))

Instructions: You may work individually or in groups of at most 3; submit one set of solutions
per group. Always acknowledge discussions you have with other people and any sources you have
used (although most homework problems should be doable without using outside sources). In any
case, solutions must be written in your own words.

1. [25 pts] Consider the following version of the 3SUM problem: given three sets of numbers
A, B, and C with |A|+ |B| 4 |C| = n, we want to decide whether there exist elements a € A,
b€ B, and ¢ € C such that c=a + 0.

In class, we have shown that in the special case when A, B C [u] (where [u] denotes {1, ..., u}),
then the problem can be solved in O(ulogu) time by FFT.

Give an algorithm for a slightly more general case when A C [u] but B and C can be arbitrary
sets of integers. Express the running time as a function of n and u. The time bound should
be truly subquadratic in n if u is truly subquadratic in n.

[Hint: divide into intervals of length u, and consider “light” vs. “heavy” intervals (intervals
with < d vs. > d elements of B U C, for some parameter d). For the light case, first give a
3SUM algorithm that solves the problem in O(|A4| + |B||C|) time...]

2. [25 pts] We are given a pattern string p; - - - p,, € X* of length m and a text string tq - - - ¢,, € X*
of length n. Here, the alphabet is ¥ = {1,...,0}. Consider the following “strange” string
matching problem: decide whether there exists an index ¢ such that p; -« pp < tiv1 - titm,
where “py---pp S tip1- - tipn” means p1 < tiy1, and p2 <tipo, ..., and pp < tipn.

(Note that comparisons of symbols make sense since we have specified that the alphabet
symbols are integers in {1,...,0}.)

(a) First describe an O(onlogn)-time algorithm for this problem.
(b) Describe an O(ny/m)-time algorithm for this problem.

3. [25 pts] We are given a collection of n strings s, ..., s e (X U {?})* with the “don’t
care” symbol 7. All strings are of length /.

We want to determine whether there exist two strings s and s (i # j) that match, where
two strings a1 - --ag and by -+ - by in (XU {?})* are said to match iff for all k, we have ay = by,
or ap =7 or by = 7.

The trivial algorithm runs in O(¢n?) time. Describe a faster algorithm.

[Hint: use the idea from Clifford and Clifford’s algorithm, but replace convolution with matrix
multiplication. . . ]



4. [25 pts] Let n be a power of 2. Redefine [n] = {0,1,...,n — 1} (in this problem, it will be
more convenient to have indices of matrices start at 0).

Given three binary strings w = uj---ug,v = vy - v, w = wy---we € {0,1}*, the triple
(u,v,w) is said to be bad iff there exists an index h such that up = vy = wy = 0. For
example, (01001, 10101,01000) is bad, because the 4th symbols in the three strings 01001 and
10101 and 01000 are all 0’s.

Similarly, given three numbers ¢, j, k € [n], the triple (¢, j, k) is said to be bad iff (¢(i), ¢(j), ¢(k))
is bad where ¢(i) denotes the binary representation of ¢ (which is viewed as a string of length
exactly log, n). For example, (9, 21, 8) is bad, because (01001,10101,01000) is bad. Note that
for n = 2, the only bad triple is (0,0, 0).

We now introduce a “funny” variant of matrix multiplication: given two n X n matrices
A = (aij)ijem) and B = (bij); je[n), define the funny product C = Ax B = (cij); jen) by the

formula:
Cij = Z ik ;-
k€n]: (i,5,k) not bad

The funny product « is like standard matrix multiplication, but with some terms missing.
For example, for n = 2, we have

< app ao1 ) < boo  bo1 ) _ ( ap1b1o apobo1 + ao1b11 >
* - b
aipp a1 bio bn aioboo + a11b1o  aiobor + a11bn
which differs from the standard matrix product in that the upper left output entry is missing
the term apobgo (since (0,0,0) is bad).

Prof. K came up with a variant of Strassen’s formulas that computes the funny product for
n = 2 using 6 multiplications, amazingly!!

(a) For arbitrary n (that is a power of 2), we can compute the funny product A * B by
divide-and-conquer, i.e., dividing each of A and B into (n/2) x (n/2) submatrices, and
using Prof. K’s formulas (where elements are (n/2) x (n/2) submatrices and multiplica-
tion of elements are funny products, computed recursively). You don’t need to justify
correctness of this divide-and-conquer algorithm.

Tt is not important to know the precise formulas, but for those who are interested, here they are (which you can
verify, assuming that I didn’t make a mistake):

p1 = (a0 + ai1)(bio + b11)

p2 = aoibio

p3 = (ao1 + ai1)(bor — b11)

ps = (a0 +ao1 + air)(bio — bo1 + bi1)
ps = (aoo + a0 + ao1 + a11)bor

ps = aio(boo — bio + bo1 — bi1)

Coo = P2

Co1 = pPs—p2+pa

clo = pe—p2+ps+ps

c11 = p1+pP2—pPs—p3



Analyze the running time 7, (n) of this divide-and-conquer algorithm (which should be
better than O(n?8!) from Strassen’s original algorithm).

Unfortunately, the funny product doesn’t seem to help solve the standard matrix multi-
plication prolem. But as you will see, it is useful in solving the Boolean matrix multipli-
cation problem: given n x n Boolean matrices A = (aij); je[n) and B = (bij); jen) with
aij, bij € {0,1}, compute C' = A @ B = (c;j); jejn) Where c;j = \/ ik A by;.

ke(n]
Take random permutations 7, 7', 7" : [n] — [n]. Consider a fixed i, j € [n]. Prove that

(i) if \/ a;, N\ by; is false, then a;,by; is always zero;
ke[n] ken]: (w(i),m'(5),7" (k)) not bad

(ii) if \/ a;i A by; is true, then Z a;rby; is nonzero with prob-
ke[n] ke€n]: (w(i),7'(j),7" (k)) not bad
ability at least (7/8)le2",

Thus, by randomly permuting the rows and columns of the matrices, we can solve the
Boolean matrix multiplication problem by a randomized algorithm in O(T)(n)) time
where each output entry is correct with probability at least (7/8)le2".

Unfortunately, the correctness probability from part (b) is low (the algorithm is wrong
most of the time!). Describe how to reduce the chance of error, so that the resulting
algorithm computes the entire output matrix is correct with probability at least 1 —
1/n'%, [Hint: repeat O((8/7)182") times. . .]

Putting parts (a)—(c) together, what final time bound do you get for Boolean matrix
multiplication? (It should hopefully be better than O(n?%!).)



