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Logistics

* Quiz 1 - If we didn’t reach out, it's satisfactory!

*  Quiz 2 — Will be out tonight (due next Tuesday).

« Group assignment is out!

« Survey due date has been extended (Sept 26 - Oct 3). Do meet earlier to
conduct a literature review and select 25+ papers, then organize them into
groups and assign jobs within the group.

* Role-playing group: 1) discuss your tackling plans with us during Thursday
office hours, the week before your presentation, or arrange a quick ad-hoc
meeting. 2) share your presentation for feedback three days before your
group presentation.



Today’s Agenda

e Camera Calibration
e Structure from Motion

e Other Cameras



Big picture: 3 key components in 3D
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Camera Calibration
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Camera Calibration

® Inputs : A collection of images with points whose 2D image coordinates and 3D world
coordinates are known.
e OQutputs: The 3x3 camera intrinsic matrix, the rotation and translation of each image.

Capture multiple images of the

. Finding camera parameters b
checkerboard from different viewpoints Find checkerboard corners J P y

minimizing 3D-2D reprojection ert
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Camera Calibration

e Minimizing the reprojection error
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Camera Calibration

Extrinsic parameters

Extrinsic parameters

https://www. mathworks.com/help/vision/camera-calibration.html Kworta ng?.’.'?.,.. to camers.cantan

https://github.com/ethz-asl/kalibr

https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html


https://www.mathworks.com/help/vision/camera-calibration.html
https://github.com/ethz-asl/kalibr
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
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Structure-from-Motion

Structure = 3D Point Cloud of the Scene
Motion = Camera Location and Orientation

SFM = Get the Point Cloud from Moving Cameras

Structure and Motion: Joint Problems to Solve

K" 098

10
Image credit: Jianxiong Xiao



Structure-from-Motion

e Establish 2D-2D correspondences across images

e Jointly refine camera pose and 3D points in an optimization framework
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Two View Reconstruction
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Keypoints Detection

e Step 1: Detect distinctive keypoints that are suitable for matching
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Descriptor for each point

e Step 2: Compute visual descriptors (SIFT features)

o . g —————

Image gradients

v

*
K

%

Keypoint descriptor

14



Descriptor for each point

e Step 3: Measure pairwise distance / similarity between features
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Match Points

e Step 3: Measure pairwise distance / similarity between features
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Match Points

SIFT (scale-invariant feature transform)

e Step 1: Detect distinctive keypoints that are suitable for matching
e Step 2: Compute oriented histogram gradient features

e Step 3: Measure distance between each pair

Image gradients Keypoint descriptor
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Match Points

e How many pair-wise matching | need to conduct?
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Match Points

e What if there are bad matches?
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Match Points Iin Practice

How can we make SIFT matching faster than exhaustive search?
- Approximate nearest neighbor search
- Hashing, KD-tree, etc.

How can we ensure a pair of match is good?

- Ratio test: my nearest neighbor should be much better than other candidates

- Consistency-check: (1) keypoint A’s nearest neighbor in image 2 is keypoint
B; (2) keypoint B’s nearest neighbor in image 1 is also keypoint A.
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Camera Calibration

® Inputs : A collection of images with points whose 2D image coordinates and 3D world
coordinates are known.
e OQutputs: The 3x3 camera intrinsic matrix, the rotation and translation of each image.

Capture multiple images of the

. Finding camera parameters b
checkerboard from different viewpoints Find checkerboard corners J P y

minimizing 3D-2D reprojection ert
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Camera Calibration

e Minimizing the reprojection error
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Extrinsic Intr|n3|c Detection Corner Points
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Two View Reconstruction
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Fundamental Matrix
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Eight-Point Algorithm

- Given a correspondence x & x|
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Eight-Point Algorithm

- Given 8 correspondences
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Eight-Point Algorithm

e Rank constraint

F—> F detF/ =0
e Minimize Frobenius norm

min ||F — F’”F subject to det F/ —0
FI

F = Udiag(al, g9, O'3)VT E> F, — Udiag(o-la g2, O)VT
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Rank Constraint
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RANSAC Estimation

e For many times
o Pick 8 points
o Compute a solution for F using these 8 points

o Count number of inliers that with geometric error close to O

e Pick the one with the largest number of inliers
e Only the inliers are kept as correspondences
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Essential Matrix

Image 1
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Essential Matrix Decomposition

e Essential matrix Eto R and t

Result 9.19. For a given essential matrix
E= Udiag(l,l,O)VT,

and the first camera matrix P, = [I[O] , there are four
possible choices for the second camera matrix P,:

P, =[UWV’ |+u, ]|
P, =[UWV'|-u,] 0
P, =[UW'V' f+u,] W= (1)

P,=[UW'V'|-u,]

Try to verify by yourself
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Extending to Multiple Views

33
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Multi-view Triangulation

Are we guaranteed to
converge?
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Multi-view Triangulation
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Bundle Adjustment
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Bundle Adjustment

What is the difference between calibration vs structure from motion?
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Continuous Optimization

MAP inference: find the best configuration that minimize the energy

*

y" = argmin F(x,y;0)
yeY

There is no universal solution. Inference algorithm choice is depending on:

Continuous vs Discrete Variables: numerical approach or search-based
Energy Functions: convex, submodular, piecewise linear, quadratic, etc.
Graphical Model Structures: containing loops or not; having high-order

terms or not? ”



MAP Inference: Gradient Descent

e Minimize continuous-valued energy based models by numerical optimization:

y ) =y — v E(x,y ")

e Pros: simple and straightforward, works for all differentiable energies
e Cons: (sub-)differentiability requirements and slow to convergence
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MAP Inference: Newton Method

e For twice-differentiable energy function, one could use Newton’s method:

—1
y" =y — (V3E(x,y®))  VyB(xy®)

backtracking line search backtracking line search
40



MAP Inference: Newton Method

e For twice-differentiable energy function, one could use Newton’s method:
—1
t+1) t 2 t t
ytD) =y _ (VyE(X,y( ))) VyE(x,y®)

e Pros: capturing curvature, better convergence, less likely stuck, less tuning
e Cons: expensive to compute inverse Hessian, hard to scale

Gradient Step (]|g]|=1.281474e+01) Newton Step (||g||=1.232242e+01)
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MAP Inference: Gauss-Newton

e Ifthe energy has a sum of square form:

E(y) =) Euly)=) (ra(y))* = llr(y)l3

(8%

e For each iteration t:

o Taylor approximation for the residual function: r(y) ~ r(y(t)) —+ Jf(y — y(t))

o Solving least square:

ytY = arg min lr(y'") + I (y — y' )13

How to get the solution? Today’s Quiz
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Multi-View Stereo

e Input: images from several viewpoints
with known camera poses and calibratior

e Output: 3D object model

Why are SFM 3D points insufficient?

Figures by Carlos Hernandez

44



Measuring the matching cost
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Measuring the matching cost
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Colmap: Photometric + Geometric Cost + View Select

e Photometric consistency: normalized cross correlation

m covy, (wy, wi™)

r= \/ €OV (wy, wy) covy, (wi™, wi™)

e Geometry consistency: forward-backward reprojection error

Zheng et al. Photometric Photometric + Geometric Filtered Normals

Pixelwise View Selection for Unstructured Multi-View Stereo, 2016
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MVSNet
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Conv + BN + ReLU, Stride=1
Conv + BN + ReLU, Stride =2
Conv, stride =1

©  Concatenation
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- Variance
- Metric

Refined Depth Map

Feature Differentiable Cost Volume Depth Map
Extraction Homography Regularization Refinement

MVSNet: Depth Inference for Unstructured Multi-view Stereo, 2018
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3D Reconstruction: SFM + MVS

[
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Image credit: Google, Michael Keass



Visual SLAM: Online SFM

50
Image credit: Yang et al. ICRA 2021



Camera Distortion

Xdistorted = x(l + kl r2 + k2r4 + k3r6)

Ydistorted = y(l + klr2 + k2r4 + k3r6)

Ma distartion Positive radial distortion Megative radial distortion

(Barrel distortion) (Pincushion distortion)
51

Image credit: OpenCV



Camera Distortion

e Remember to cv2.undistort the image if you want to reason in 3D.

2
after Image credit: OpenCV\



Event Cameras

Standard Camera

Image credit: Davide Scaramuzza



http://rpg.ifi.uzh.ch/docs/scaramuzza/Tutorial_on_Event_Cameras_Scaramuzza.pdf

Fisheye Camera / Omnidirectional Camera

Image credit: OZ robotics
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http://rpg.ifi.uzh.ch/docs/scaramuzza/Tutorial_on_Event_Cameras_Scaramuzza.pdf

What | Didn’t Cover

e Stereo Rectification

Making two stereo camera frontal parallel.

e Five-Point Algorithms

Recover Essential/Fundamental Matrix from 2D-2D Correspondences

e Projection Matrix Decomposition

Recover R and t from camera projection matrix

e Essential Decomposition

Recover R and t from essential matrix estimation
e Perspective-n-Projection (PnP)
Recover R and t from 2D-3D correspondences

Check Szeliski or MVG Book if you want to know these concepts
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