CS 598 3D Vision: Correspondences

Shenlong Wang UIUC

Logistics

- Survey (due tonight): https://forms.gle/mUmMZbx8ZwgUkT5W9
- Quiz-1 (due Thursday): https://forms.gle/sF1yLkbgRNmWwcyX7
- Slack: https://join.slack.com/t/cs598-fall243dvision/shared_invite/zt-
 - 2pauk6vc5-IrLzsqif8exix6A~Ph5IFQ

Today's Agenda

- What & Why Correspondence?
- Optical Flow
- Dense Point Tracking
- Sparse Feature Matching
- Two-View Geometry (if time allows)

Correspondence Problem

Given two or more images, taken from different view/time/motion, *find a set of points in one image which can be identified as the same points in another image*

Recap

Correspondences are the "Foundational Model" for 3DV

- Image alignment (e.g., mosaics)
- Stereo matching
- Multi-view 3D Reconstruction
- Motion tracking
- Nonrigid Reconstruction
- Object recognition and tracking
- Image retrieval and place recognition
- SLAM
- AR/VR
- Robot navigation
-

What are the three most important problems in computer vision?

"Correspondence, Correspondence, Correspondence!"

Correspondences across viewpoints

Correspondences between 3D

Correspondences across motion

Correspondences over time

Today's Agenda

- What & Why Correspondence?
- Optical Flow
- Dense Point Tracking
- Sparse Feature Matching
- Two-View Geometry (if time allows)

Optical Flow

Goal: Estimate motion of any pixel from Image 1 to Image 2

Image credit: KITTI

Optical Flow

Goal: Pixel motion from Image 1 to Image 2

Image credit: KITTI

Optical Flow

$$\underbrace{(x,y)}_{\text{displacement}} = (u,v)$$

$$I_{\text{t-1}}$$

$$(x + u, y + v)$$

$$I_{t}$$

Image credit: Seitz

Sparse vs Dense Flow

Image credit: KITTI

Why Optical Flow is Important?

We live in a moving world

Image credit: giphy.com

Why Optical Flow is Important?

Sometimes it is difficult to identify things without motion

Image credit: giphy.com

Applications

Recognize actions in video

Image credit: Simonyan et al.

Applications

Tracking motion of objects

Applications

Estimate the motion of the embodied agent itself

Image credit: Geiger et al.

Motion in Pixel is a Result of Motion in 3D

Motion of Camera

Image credit: S. Seitz.

Motion in Pixel is a Result of Motion in 3D

Motion of the Scene

Image credit: S. Seitz.

Motion Field

The motion field is the projection of the 3D scene motion into the image.

- **P**(*t*) is a moving 3D point
- Velocity of scene point: V = dP/dt
- $\mathbf{p}(t) = (x(t), y(t))$ is the projection of **P** in the image
- Apparent velocity v in the image: given by components v_x = dx/dt and v_y = dy/dt
- These components are known as the motion field of the image

Image credit: S. Seitz.

Why Optical Flow is Difficult?

Illumination change Scale change Large Displacement Occlusion Transparent and reflective Repetitive structure Aperture problem Small objects

Image credit: KITTI

Image credit: Sintel

Why Optical Flow is Difficult?

Illumination change Scale change Large Displacement Occlusion Transparent and reflective Repetitive structure Aperture problem Small objects

Image credit: KITTI

Image credit: Sintel

Why Optical Flow is Difficult?

Illumination change

Scale change

Large Displacement

Occlusion

Transparent and reflective

Repetitive structure

Aperture problem

Small objects

Perceived motion

Actual motion

http://en.wikipedia.org/wiki/Barberpole_illusion

Brightness Consistency

displacement =
$$(u, v)$$

$$(x + u, y + v)$$

$$I(x,y,t)$$

Brightness Constancy Equation:

$$I(x, y, t-1) = I(x + u(x, y), y + v(x, y), t)$$

Can be written as:

shorthand:
$$I_x = rac{\partial I}{\partial x}$$

$$I(x, y, t-1) \approx I(x, y, t) + I_x \cdot u(x, y) + I_y \cdot v(x, y)$$

So,
$$I_x \cdot u + I_v \cdot v + I_t \approx 0$$

Solving Flow by Brightness Consistency

• For each pixel (x, y) we have:

$$I_x(x,y) \cdot u(x,y) + I_y(x,y) \cdot v(x,y) = -I_t(x,y)$$

How many unknowns for each pixel? How many equations brought by each pixel?

Solving Flow by Brightness Consistency

• For each pixel (x, y) we have:

$$I_x(x,y) \cdot u(x,y) + I_y(x,y) \cdot v(x,y) = -I_t(x,y)$$

Underdetermined! How to overcome?

Lucas Kanade Method

For each flow vector (u, v) we bring more equations:

All pixels in a local patch $egin{cases} I_x(q_1)V_x+I_y(q_1)V_y=-I_t(q_1)\ I_x(q_2)V_x+I_y(q_2)V_y=-I_t(q_2)\ dots\ I_x(q_n)V_x+I_y(q_n)V_y=-I_t(q_n) \end{cases}$

What assumption do we make here?

Horn-Schunck method

Our data term is:

$$E_{\text{data}} = \sum_{x,y} (I_x(x,y) \cdot u(x,y) + I_y(x,y) \cdot v(x,y) + I_t(x,y))^2$$

And we expect motion should be smooth:

$$E_{\text{regularization}} = \lambda \sum_{x,y} (\|\nabla u(x,y)\|^2 + \|\nabla v(x,y)\|^2)$$

Can be solved by Euler-Lagrangian Equation:

$$u^{k+1} = \overline{u}^k - \frac{I_x(I_x \overline{u}^k + I_y \overline{v}^k + I_t)}{\alpha^2 + I_x^2 + I_y^2} \qquad v^{k+1} = \overline{v}^k - \frac{I_y(I_x \overline{u}^k + I_y \overline{v}^k + I_t)}{\alpha^2 + I_x^2 + I_y^2}$$

Key Assumptions

- Consistency: Corresponding points look similar
- Small motion: Points do not move very far
- Smoothness: Motion is locally smooth and consistent

Deep Learning

- Classification
- Detection
- Segmentation
- Boundary
- Stereo
- Action
- Depth
- Enhancing
- ..

Late 2016

Earlier than 2015

Optical Flow

Any idea why?

• • •

Challenge: Data

Image credit: KITTI

Solution: Realistic Synthetic Data

Image credit: Sintel

FlowNet

PWC-Net

RAFT

Visualizing Flow

Flow vectors:

- Direction mapped to color
- Magnitude mapped to saturation

Qualitative Results

Qualitative Results

Today's Agenda

- What & Why Correspondence?
- Optical Flow
- Dense Point Tracking
- Sparse Feature Matching
- Two-View Geometry (if time allows)

Could we track correspondence over an entire video

Input: input video + any
query points

Output: point trajectory (2D location + point occlusion status) at each time t.

Could we track correspondence over an entire video

Per-frame Initialization

Estimate an initial solution through deep convolutional features and cost volumes

Temporal Refinement

Refine and solution overtime to get a smooth, robust and uncertainty aware final trajectory

Could we track correspondence over an entire video

Sparse Correspondence (Keypoint correspondence)

Sparse Correspondence (Keypoint correspondence)

Sparse vs Dense

More Distinctive

Minimize wrong matches

More Flexible

Robust to expected variations
Maximize correct matches

Sparse Correspondence (Keypoint correspondence)

Sparse Correspondence (Keypoint correspondence)

Keypoints Detection

Step 1: Detect distinctive keypoints that are suitable for matching

Intuition: corners, blobs & boundaries are better regions to match than plain, textureless regions.

Descriptor for each point

Step 2: Compute visual descriptors (e.g. SIFT features)

Intuition: grad histogram can capture structure information, while being less prone to lighting/small transforms

Descriptor for each point

Step 3: Measure pairwise distance / similarity between features

Step 3: Measure pairwise distance / similarity between features

Step 4: Perform outlier removal test (e.g. ratio test)

Intuition: a good pair of correspondence should be unique: 1) score should be much higher than other candidates (ratio test), and/or 2) we are mutually best match (consistency check).

SIFT (scale-invariant feature transform)

- Step 1: Detect distinctive keypoints that are suitable for matching
- Step 2: Compute oriented histogram gradient features
- Step 3: Measure distance between each pair

How many pair-wise matching I need to conduct?

• What if there are bad matches?

SuperGlue

SuperGlue

A Graph Neural Network with attention

Solving a partial assignment problem

LIFE: V-J Day in Time Square

Could we find correspondence without co-visibility?

Next: Do we always search over the entire image?

Correspondence field is smooth: check neighbors first!

PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing

Next: Known camera: 2D --> 1D search

left image

right image

the match will be on this line (same y)

Logistics

- Survey (due tomorrow): https://forms.gle/mUmMZbx8ZwgUkT5W9
- Quiz-1 (due Thursday): https://forms.gle/sF1yLkbgRNmWwcyX7
- Slack: https://join.slack.com/t/cs598-fall243dvision/shared_invite/zt-2pauk6vc5-lrLzsqif8exix6A~Ph5IFQ