CS598 Fall 2024: 3D Vision 3D & Camera Basics

Shenlong Wang

Aug 27, 2024

Today's Agenda

- Coordinates & Axis
- Rigid Transforms & Rotations
- Camera Basics
- Perspective Geometry
- Homography

Prerequisite

- Vector
- Matrix
- Linear Transforms
- Dot Product
- Cross Product

Rigid Object

How would you quantitatively represent the state of the vehicle?

- How would you represent the state of the vehicle?
 - State of a static rigid body = (Position, Orientation)

Body Frame

Parameters of the states also defines a local coordinate frame

Body Frame

Body Frame

Can we get the pedestrian's position in the world frame?

Rigid Transform between Frames

World

$$\mathbf{p} = \mathbf{R}\mathbf{p}' + \mathbf{t} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix} egin{bmatrix} p_x' \ p_y' \end{bmatrix} + egin{bmatrix} t_x \ t_y \end{bmatrix}$$
Step 1: rotate by theta Step 2: transposed $\mathbf{p}' = (p_x', p_y')^T$ $\mathbf{x} = (t_x, t_y, heta)$

Step 2: translate

Properties of Rigid Transform

$$\mathbf{p}' = \mathbf{R}\mathbf{p} + \mathbf{t} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} p'_x \\ p'_y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Step 1: rotate by theta

Step 2: translate

$$\mathbf{R}^T \mathbf{R} = \mathbf{R} \mathbf{R}^T = \mathbf{I}, \det \mathbf{R} = 1$$

Please validate the two properties offline

Properties of Rigid Transform

Euclidean distance between any pair of two points is preserved:

$$y \qquad \mathbf{c} \qquad \mathbf{b}$$

$$\mathbf{c} \qquad \mathbf{b}$$

Properties of Rigid Transform

 Orientation-preserving or no reflection: any rotation between vectors is preserved:

Homogenous Coordinate

```
\begin{bmatrix} p_x \\ p_y \end{bmatrix}
```


$$\begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

Why matters?

Homogenous Coordinate

$$\begin{bmatrix} p_x \\ p_y \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} p'_x \\ p'_y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

$$\begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p'_x \\ p'_y \\ 1 \end{bmatrix}$$

Homogenous Coordinate

$$\hat{\mathbf{p}} = \mathbf{T}\hat{\mathbf{p}}' = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \hat{\mathbf{p}}'$$

$$y \quad \mathbf{c}$$

$$\mathbf{b}$$

$$\mathbf{c}$$

$$\mathbf{b}'$$

Which direction for z?

Roboticists and CVers mostly use right hand

How many numbers do we need to represent a 3D rigid transform?

Inverse of Rigid Transform

$$\mathbf{T}^{-1} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{R}^T & -\mathbf{R}^T \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix}$$

Try to verify the correctness!

$$\mathbf{R}^{-1} = \mathbf{R}^T, \mathbf{T}^{-1} \neq \mathbf{T}^T$$

Rotation Matrix

$$\{\mathbf{R}|\mathbf{R}\in\mathbb{R}^{3\times3},\mathbf{R}^T\mathbf{R}=\mathbf{R}\mathbf{R}^T=\mathbf{I},\det\mathbf{R}=1\}$$

Orthogonal

Right hand coordinate system

Rotation Matrix

$$\{\mathbf{R}|\mathbf{R}\in\mathbb{R}^{3 imes3},\mathbf{R}^T\mathbf{R}=\mathbf{R}\mathbf{R}^T=\mathbf{I},\det\mathbf{R}=1\}$$
Orthogonal Right hand coordinate system

- ullet Preserving Length: $||\mathbf{R}\mathbf{v}|| = ||\mathbf{v}||$
- f Ra imes Rb = R(a imes b)

Could you prove these?

Rotation Matrix

Rotating a Vector:

$$\mathbf{p}' = \mathbf{R}\mathbf{p}$$

Composition:

$$\mathbf{R}' = \mathbf{R}_2 \mathbf{R}_1 \qquad \mathbf{R}_1 + \mathbf{R}_2$$

- Not compact: 3x3 numbers vs 3-DoF.
- Optimization/interpolation is not straightforward:

Euler Angles

Three elemental rotations sequentially applied on each axes.

Euler Angles: Order Matters

- Need to specify the order. In total there are twelve valid combinations.
- (Roll, Pitch, Yaw) is a special case:

$$R = R_z(\gamma)\,R_y(eta)\,R_x(lpha) = egin{bmatrix} \cos\gamma & -\sin\gamma & 0 \ \sin\gamma & \cos\gamma & 0 \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} \coseta & 0 & \sineta \ 0 & 1 & 0 \ -\sineta & 0 & \coseta \end{bmatrix} egin{bmatrix} 1 & 0 & 0 \ 0 & \coslpha & -\sinlpha \ 0 & \sinlpha & \coslpha \end{bmatrix}$$

Euler Angles: Gimbal Lock

 Loss of one degree of freedom in a three-dimensional, three-gimbal mechanism

Rotation along y and z becomes the same!

Axis-angle

- 4-number representation (3d unit vector + 1d angle)
- Ambiguities: (-angle, -axis) is the same as (angle, axis)
- Minimal version: Euler vector (3d arbitrary vector)
- Conversion to rotation (Rodriguez formula):

$$\mathbf{R} = \mathbf{I} + [\mathbf{u}]_{\times} \sin \psi + [\mathbf{u}]_{\times}^{2} (1 - \cos \psi)$$

$$[\mathbf{u}]_{\times} = \begin{bmatrix} 0 & -u_z, & u_y \\ u_z & 0 & -u_x \\ -u_y & u_x & 0 \end{bmatrix}$$

Could you derive it?

Axis-angle

Suffer from the "edges"

$$r_{1} = \begin{pmatrix} 0 \\ 0 \\ 179^{\circ} \end{pmatrix}$$
 $r_{2} = \begin{pmatrix} 0 \\ 0 \\ -179^{\circ} \end{pmatrix}$ $r_{1} - r_{2} = \begin{pmatrix} 0 \\ 0 \\ 358^{\circ} \end{pmatrix}$

Actual angular difference is only 2 deg.

- Interpolation and composition is hard.
- Rotating a vector is not straightforward. We have to convert it back to matrix.

Unit Quaternions

Quaternion:

$$\mathbf{q} = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k}$$

Unit Quaternion as Rotation Representation:

Pros:

- Continuous
- Numerically stable
- Relatively compact
- Rotating a vector is efficient

||q|| = 1

https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation

Rotations Cheat Sheet

	Parameters	Singularities	Composition and Action
Matrix	9, orthogonality constraints	No	Easy
Euler Angle	3, [0, 2pi] or [0, pi]	Gimbal lock	Hard
Axis-Angle	4, unit axis vector	theta = 0	Hard
Rotation Vector	3, v < pi	Double representation	Hard
Quaternions	4, unit quaternion	Double representation, q -q	Easy

Camera: History

First mention ...

Chinese philosopher Mozi (470 to 390 BC)

The shadow resembles the human figure. Light that hits the feet passes through a small hole and projects upward, forming an image above. Light that hits the head passes through the hole and projects downward.

Camera: History

First mention ...

Chinese philosopher Mozi (470 to 390 BC)

First camera ...

Greek philosopher Aristotle (384 to 322 BC)

Early Cameras

View from the Window at Le Gras (1825), the earliest surviving photograph

Kodak (1888) roll-film hand camera

Rectaflex, the first pentaprism SLR for eyelevel viewing

Pinhole Camera

Pinhole Camera

real-world object

digital sensor (CCD or CMOS)

What does the image on the sensor look like?

Image credit: Kris Kitani

Bare-Sensor Imaging

All scene points contribute to all sensor pixels

Image credit: Kris Kitani

Image credit: Kris Kitani

Pinhole Camera

Any drawbacks?

Pinhole Camera

Lens Camera

Lens can vary

Choose the right focal length for your project

Focal Length: Short or Long?

Camera detecting front vehicles in highway beyond 200m.

Drone navigate in cluttered environment

Depth of focus

Aperture size

Image credit: https://digital-photography-school.com/

Aperture size

Short or Long?

Digital Camera Imaging Process

Image credit: pentax, wikiipedia

Camera as a Coordinate Transform

What are the dimensions of each variable?

Camera as a Coordinate Transform

$$x = PX$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

homogeneous image coordinates 3 x 1

camera projection matrix 3 x 4

homogeneous world coordinates 4 x 1

Now let's introduce the camera coordinate frame

Points along the same projection ray maps to the same 2D point 3D object Image Plane CameraCamera Center at Camera Frame: (0, 0, 0) \mathcal{X} $Imag ar{e}$

focal length f = 1

Similar Triangles

$$[X \quad Y \quad Z]^{\top} \mapsto [fX/Z \quad fY/Z]^{\top}$$

Similar Triangles

Relationship from similar triangles:

$$[X \quad Y \quad Z]^{\top} \mapsto [fX/Z \quad fY/Z]^{\top}$$

General camera model in homogeneous coordinates:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

What does the pinhole camera projection look like?

$$\mathbf{P} = \left[egin{array}{cccc} f & 0 & 0 & 0 \ 0 & f & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

Perspective Projection

In particular, the camera origin and image origin may be different:

camera center projected onto image plane along z-axis

How does the camera matrix change?

$$\mathbf{P} = \left[egin{array}{cccc} f & 0 & 0 & 0 \ 0 & f & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

Perspective Projection

In particular, the camera origin and image origin may be different:

Decomposition

We can decompose the camera matrix like this:

$$\mathbf{P} = \left[egin{array}{ccc|c} f & 0 & p_x \ 0 & f & p_y \ 0 & 0 & 1 \end{array}
ight] \left[egin{array}{ccc|c} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

(homogeneous) transformation from 2D to 2D, accounting for not unit focal length and origin shift

(homogeneous) perspective projection from 3D to 2D, assuming principal axis is z-axis, perpendicular to image plane

Also written as:
$$\mathbf{P} = \mathbf{K}[\mathbf{I}|\mathbf{0}]$$
 where $\mathbf{K} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix}$

Camera Models

focal length f =1

Projection Matrix from World to Image

$$P = K[R|t]$$

$$\mathbf{P} = \left[egin{array}{cccc} f & 0 & p_x \ 0 & f & p_y \ 0 & 0 & 1 \end{array}
ight] \left[egin{array}{cccc} r_1 & r_2 & r_3 & t_1 \ r_4 & r_5 & r_6 & t_2 \ r_7 & r_8 & r_9 & t_3 \end{array}
ight]$$
 intrinsic extrinsic parameters parameters parameters $\mathbf{R} = \left[egin{array}{cccc} r_1 & r_2 & r_3 \ r_4 & r_5 & r_6 \ r_7 & r_8 & r_9 \end{array}
ight] \mathbf{t} = \left[egin{array}{cccc} t_1 \ t_2 \ t_3 \end{array}
ight]$ 3D rotation 3D translation

Projection Matrix from World to Image

$$P = K[R|t]$$

$$\mathbf{P} = \left[egin{array}{cccc} f & 0 & p_x \ 0 & f & p_y \ 0 & 0 & 1 \end{array}
ight] \left[egin{array}{cccc} r_1 & r_2 & r_3 & t_1 \ r_4 & r_5 & r_6 & t_2 \ r_7 & r_8 & r_9 & t_3 \end{array}
ight]$$
 intrinsic extrinsic parameters parameters parameters $\mathbf{R} = \left[egin{array}{cccc} r_1 & r_2 & r_3 \ r_4 & r_5 & r_6 \ r_7 & r_8 & r_9 \end{array}
ight] \mathbf{t} = \left[egin{array}{cccc} t_1 \ t_2 \ t_3 \end{array}
ight]$ 3D rotation 3D translation

Be careful and camera coordinate definition!

Camera Distortion

$$x_{distorted} = x(1 + k_1r^2 + k_2r^4 + k_3r^6)$$

$$y_{distorted} = y(1 + k_1r^2 + k_2r^4 + k_3r^6)$$

Image credit: OpenCV

Camera Distortion

Remember to cv2.undistort the image if you want to reason in 3D.

before after Image credit: OpenCV

Understanding perspectives helps recognition

D. Hoiem, A.A. Efros, and M. Hebert, "Putting Objects in Perspective", CVPR 2006.

What's new: more generic (but over-parameterized) camera model

Perspective Fields on Pinhole Camera

Check out how Perspective Fields change w.r.t. pinhole camera parameters.

For each pixel location, the Perspective Field consists of a unit *Up-vector* and *Latitude*. The *Up-vector* is the projection of the up direction, shown in Green arrows. In perspective projection, it points to the vertical vanishing point. The *Latitude* of each pixel is defined as the angle between the incoming ray and the horizontal plane. We show it using contour line: $-\pi/2 = -\pi/2$. Note 0° is at the horizon.

Input

Linyi Jin, Jianming Zhang, Yannick Hold-Geoffroy, Oliver Wang, Kevin Matzen, Matthew Sticha, David F. Fouhey Perspective Fields for Single Image Camera Calibration. CVPR 2023.

How to fail a 3D vision project?

- Use addition for rotation composition.
- Transpose a rigid transform and pretend you did an inversion.
- Do not know which 3D coordinate system was used.
- Use distorted images.
- ... many others

What if a planar object projected onto the camera plane?

What if a planar object projected onto the camera plane?

What if a planar object projected onto the camera plane?

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

homogeneous image coordinates 3 x 1

camera projection matrix 3 x 4

homogeneous world coordinates 4 x 1

World

What if a planar object projected onto the camera plane?

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix}$$

homogeneous image coordinates 3 x 1

camera projection matrix 3 x 4

homogeneous world coordinates 4 x 1

World

What if a planar object projected onto the camera plane?

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix}$$

homogeneous image coordinates 3 x 1

camera projection matrix 3 x 4

homogeneous world coordinates 4 x 1

What if a planar object projected onto the camera plane?

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

homogeneous image coordinates 3 x 1 homography matrix 3 x 4

homogeneous planar coordinates 3 x 1

NFL Nintendo

Bai et al. IROS 18

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

$$x' = \frac{h_1 X + h_2 Y + h_3}{h_7 X + h_8 Y + h_9} \qquad y' = \frac{h_4 X + h_5 Y + h_6}{h_7 X + h_8 Y + h_9}$$

(950, 750)

$$x' = \frac{h_1 X + h_2 Y + h_3}{h_7 X + h_8 Y + h_9} \qquad y' = \frac{h_4 X + h_5 Y + h_6}{h_7 X + h_8 Y + h_9}$$

$$h_1X + h_2Y + h_3 - x'(h_7X + h_8Y + h_9) = 0$$

$$h_4X + h_5Y + h_7 - y'(h_7X + h_8Y + h_9) = 0$$

$$h_1X + h_2Y + h_3 - x'(h_7X + h_8Y + h_9) = 0$$

$$h_4X + h_5Y + h_7 - y'(h_7X + h_8Y + h_9) = 0$$

$$\begin{bmatrix} 0 & 0 & 0 & X & Y & 1 & -y'X & -y'Y & -y' \\ X & Y & 1 & 0 & 0 & 0 & -x'X & -x'Y & -x' \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ \dots \\ h_9 \end{bmatrix} = 0$$

Γ	0	0	0	X_1	Y_1	1	$-y_1'X_1$	$-y_1'Y_1$	$-y_1'$	$\mid \mid h_1 \mid$]
	X_1	Y_1	1	0	0	0	$-x_1'X_1$	$-x_1'Y_1$	$-x_1'$	h_2	
	0	0	0	X_2	Y_2	1	$-y_2'X_2$	$-y_2'Y_2$	$-y_2'$	h_3	
	X_2	Y_2	1	0	0	0	$-x_2'X_2$	$-x_2'Y_2$	$-x_2'$	h_4	
	0	0	0	X_3	Y_3	1	$-y_3'X_3$	$-y_3'Y_3$	$-y_3'$	h_5	= 0
	X_3	Y_3	1	0	0	0	$-x_3'X_3$	$-x_3'Y_3$	$-x_3'$	h_6	
					•••					h_7	
	0	0	0	X_n	Y_n	1	$-y_n'X_n$	$-y_n'Y_n$	$-y'_n$	h_8	
	X_n	Y_n	1	0	0	0	$-x_n'X_n$	$-x_n'Y_n$	$-x'_n$	$\mid \mid h_9 \mid$	

$$\mathbf{Ah} = \mathbf{0}$$
Homogeneous linear equations $\mathbf{U}, \mathbf{\Sigma}, \mathbf{V} = \operatorname{svd}(\mathbf{A})$

h last singular vector in V (corresponding to smallest singular values)

Steve Brunton: Singular Value Decomposition: Overview; Wikipedia

Today's Agenda

- Coordinates & Axis
- Rigid Transforms & Rotations
- Camera Basics
- Perspective Geometry
- Homography

TODOs

- Join Slack: https://shorturl.at/jV1NL
- Fill in a quick survey form: https://forms.gle/mUmMZbx8ZwgUkT5W9
- Mini Quiz 1: Draw a diagram about rotations: https://forms.gle/sF1yLkbgRNmWwcyX7