Led 3 (wed, 25 Jan): Lemke-Howson Algorithm (1964)

Wednesday, January 25, 2017

11:24 AM

ARecap:

NE in a Game -> SNE in symm. Game

Symmetric Game : (players are indistinguistable)

 $S_1 = S_2 = S \Rightarrow A_1 = A_2 = A$; $B = A = B^T$

Symmetric NE: NE $(\overline{x}, \overline{y})$ s.t. $\overline{x} = \overline{y}$ \Rightarrow NE $(\overline{x}, \overline{x})$ iff

 $\forall i \in S: \alpha > 0 \Rightarrow (A \propto)_i = \text{prex}(A \propto)_{\mathcal{K}}$

=> Due to scale in variance without loss of generality we can assume that A>0.

(See lec 2 notes).

A Linear Complementarity Problem (LCP)
Formulation.

Define: V= max (Ax) k

· x is SNE its

~. >n (a1): 2 / . 6 20 = 1/x

Vies: $x_i \ge 0$, $(Ax)_i \le V_x$ of $x_i = 1$ Vies: $x_i \ge 0$ or $(Ax)_i = V_x$ \Rightarrow Since A > 0, we have $V_x \ge 0$ at any $x \in A$. Define: $Z_i = \frac{x_i}{V_x}$ Hen, equivalent system is

Vits: 2:30, $(Az)i \le 1$ \longrightarrow #Vies: 2:30 or (Az)i = 1

Claim 0: It $Z \neq \bar{0}$ is a solm $B \neq Hen$ $\chi \text{ st. } \mathcal{A} = \frac{Z_{i}}{Z_{i}}, \text{ Vi } \text{ fs. } 4 \text{ V}_{\alpha} = 1$ is a solm $B \neq H$.

Prost: Clearly 52 is well defined
because 52; >0. The rest
follows by definition of # 4 # 17

Due to the above claim, finding SNE of game (A, AT) reduces to finding Solm of ## Heet is non zero.

Goal: Find Z +0 Kat satisfies (#).

Emke-Howson (LH) Algorikm.

(Polstope) P: /z/Z; zo, (Az)i = I Vi)

Complementary. $Z_i = 0$ or $(AZ)_i = I + i$ Conditions

* Definitions:

> We say an "in-equality is right at a point it it holds with equalitity here i.e. at $\bar{z}=0$, in equality $Z_1 > 0$ is right but " $(A\bar{z})_1 \leq 1$ is sool.

- > Tz = { set 88 tight inequalities at 2} for ZeP. i.e. for Z=0 Tz={ln/ies}.
- -> We say "label its is present at any point ZEP it either ip & Tz or in & Tz.
- -> Fully Labeled (FL): ZEF is called tally labeled it Vies, label it is present at Z.
- > 1-Almost Full Labeled (FLI): YZEP

 where all but label I have to be

 present, i.e. Vits, i+1, label i is

 present at Z.

Next 3 claims tollows troon detinitions.

Claim 1: FLC FLICP

1. 7 FFL E) Z satisties (#)

Claim 2: ZEFL E) Z satisties (#/

Claim 3: ZE 0

From Claim 2, au can recevite our goal as.

boal: Find a nonzero tulky lubeled polat. I.e., find ZEFL, Z#O.

lemke-Howson algorithm starts at Z=0 and tollows a path of I-almost tally lubeled points. To understand only such a path exists are need to know some tacts about polytopes tirst.

& Some Properties 88 Polytopes:

A set of linear inequalities defines a polytope (or called polytecher it unbounded). System

where A is min $Ax \leq b$

Ax 66 where His min n-dimensions with detines polytope in example m inequalities. For $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2z \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ defines Hyper-planes $T_a = \left\{ x = 0, y = 0 \right\}$ $T_d = \left\{ x + y = 1 \right\}$ $T_{h} = \{ y=0, x+y=1 \}$

Lemma 1: If x , s.t. $H\alpha = 0$ $0 T\alpha \leq n$. $0 T\alpha = n$ Hen α is a vertex. $0 T\alpha = n$ Hen α is on an edge. $0 T\alpha = n$ Hen α is on an edge.
Above, me Lave
$\frac{d}{d} = \frac{176}{150} = 2$ $T_d = \frac{174}{150} = 1$
In general, $ \begin{array}{ccc} (Ax)j & < bj \\ V & & (Ax)j & < bj \\ V & & (Ax)j & < bj \\ k & is hight & (Ax)j & = bj \\ (Ax)_{k} & = b_{k} \end{array} $ $ \begin{array}{cccc} (Ax)_{k} & < b_{k} & (Ax)_{k} & < b_{k} \end{array} $
(A1); 4b; Lemma 2: Let Vertices V & V' are edjacent Lemma 2: Let Vertices V & V' are edjacent
V' can be reached from V by relaxing
inequality k, namely (Ax) = bk, and at
in hast imparality is i manchy

ر ۱۰ ا ا المحدد و ۱ ا المحدد ا V' He new tight inequality is i, narry (A)); = b; Hem 1 Tv = { Tv \ { k} } \ U { j } (2) torong dee, d=v, v' I= TV | {K} = Ty/ \ {i} { = TV NTV (3) Relaxing $(Ax)_j = b_j$ at V' leads back to V.

A Back to the LH Algorithm.

- Note Kut in polytope P is delined on n variables

 4 2n constraints. Therefore it is in ordinamions.

 n inequalities are tight at it's vertices

 (Leonne I).
- > Duplicate label: We say that label its is duplicate at ZEP it iptZ & im EZ.

Lemma 3: It ZEFL Ken Z is a vertex 88 polytope P and has no duplicate label.

Proof. $ZEFL \Rightarrow ipt Te on int Te, Vies$ $: 1sl=n \Rightarrow |Te| \geq n$

It there is a duplicate label at Z. Hen $|T_Z| > n$, which contradicts Lemma I.

. no duplicate label at Z

) |Tz|=n => Z is a vertex (Lemma 1).

Next, we will try to understand structure of FL1.

Lemma 5: Let ZEFLI Han

1) Z is either a vertex or on an

- 1) Z is either a vertex or on an edge
- (2) It Z is a vertex and is not tully-lubeled (Z&FL) then there is exactly one duplicate label at Z.

 Number of edges adjacent to Z in FL1 is two.
- (3) It ZEFL, then it has one adjacent edge in FL1.

Part (): By detimition of FLI,

Vies, it either ip & Tz or in & Tz

> 1 Tz | > n-1 => z on a vertex or

on an edge of f

(:: Lemma I)

Part (2): Vertex Z & FLI & Z& FL.

To the contrary, if no k & S, k & I is duplicate

Han YKES, k & exactly one of

i & i in T2, and

ip 4 in in Tz, and

none B 1p 4 1n in Tz

\[
\text{Tz} = n-1 = \text{Contradiction to} \\

\text{Z being a vertex.}
\]

Suppose k \(\pm 1 \) is duplicate

Suppose $k \neq 1$ is duplicate

If more flam 1 duplicate label then

by similar argument we have $|T_{Z}| > M \Rightarrow \text{ (ontradiction to Lemma 1.}$ i. Exactly one duplicate label at Z.

Let it be $k \in S$, $k \neq 1$.

Then $k_p \in T_Z \Rightarrow (AZ)_k = b_k$ $k_n \in T_Z \Rightarrow Z_k = 0$

Exilable CAZ) = 6x Cilable Cilable

Suppose, Relaxing (AZ) = bx gives edge e, &

Suppose, Relaxing (AZ) K = bx our relaxing $Z_k = 0$ " C_2 . Then on a, $Z_{k}=0$ Still Lolds (: Cemmy 2) on e_{2} , $(AZ)_{k}=b_{k}$ " .. kn E Tei, kp E Tez => e, e2 t Fb1. For any other i+k1 we have exactly one of $Olipe T_{z} \Rightarrow (Az)_{i} = bi$ Bint 1z => Zi = 0 Say () is the care, then e: edge obtained by relaxing (AZ)i=bi Hen label i is not present on e => e&FLI This proves that exactly two edges of FLI are adjacent to vertex ZEFLI FL. Part 3: Proof is similar to that of part 8. ZEFL => no duplicate lubel at Z* (:'Lemma 3)

ZEFL » no duplicate mon as exactly one to ip on int It \Rightarrow exactly one of $(AZ)_{i}=I$ or $Z_{i}=0$ hold. $Te = Tz \setminus \{x_m\}$ $Te = Tz \setminus \{x_m\}$ $E \in FLI$ $E = Tz \setminus \{x_m\}$ Z=0 Similarly, it (AZ) = 1 Hen relaxing it will give an edge in Fly Relaxing any other equality from Tzt will losse a label from {2,-, n} =) the corresponding edge can not be in FLI. Lemma 4 & 5 implies Mat Theorem 1: Fli consists 88 parts of cycles on 1-skeleton (edges & vertices) 8 polytope P. Endpoints & He paths are exactly the points in FL. Proot: Part (1) de Lemma 5 => Fl.1 C 1- Skeleton & P.

Fl1 C 1- Skeleton 85 J. Part @ => Vertex VEFLI/FL Lemas # odgos & Fla inviden => # edges & FLI incident on V is two >> deg(V) in Flz = 2. >> Vertex VEFL lema 5 \$ # edges & FlI incident on v is one. \Rightarrow deg(V) in $Fl_1 = I$ Thus, FLI is a graph where depree 8 vertices is I or 2 => FL1 is a set of paths & cycles. Part (3) => vertex VEFL ist dag(v) in FL, Cemmus is 1 >> FL = end-points of paths of Fly. Theorem I implies that off is end-point A one & the parts in FLI which has to - a point in FL = At a

ond at a non-zero paint in FL = At a and at a non-zero paint in FL = At a solf A our problem. Solf A our problem. LH Algorithm trave-sex his pain starting (AZ)2=1 From T. Ex=0 (new) (AZ)2=1
O 2100 250 250 Es = 0 Es = 0 Es = 0 Thumb Rule: Leave duplicate label Complimentary Pivot Algorithm
(a) Initialize: $\overline{z}=0$ (b) Initialize: $\overline{z}=0$ (c) $z' = relax \ z_1 = 0$ (c) $z' = relax \ z_1 = 0$ (d) $z' = relax \ z_1 = 0$ (e) $z' = relax \ z_1 = 0$ (f) $z' = relax \ z_1 = 0$ (g) $z' = relax \ z_1 = 0$ (a) $z' = relax \ z_1 = 0$ (b) $z' = relax \ z_1 = 0$ (c) $z' = relax \ z_1 = 0$ (d) $z' = relax \ z_1 = 0$ (e) $z' = relax \ z_1 = 0$ (f) $z' = relax \ z_1 = 0$ (g)

(1) It (AZ) = I is he new ngm Z' = relax ZK = 0 Else z'= relax (AZ) x=I Go To (2) Lemke-Howson Algorithm Theorem 2: LH Algorithm terminates with a solution of (#) Clearly Algorithm starts and Ends at a fully-labeled vertex 4 in between maintains all labels except 1 >> It follows the Path in Fli sturting at 5. (: Reorem I) Since A>0, Pis bounded 3) The path has to terminate. I Re algorithm has to terminate

Log(V)=3 > contradiction to Part &. deg(0)=2 => contradiction to part (3 Lemna 5. => Path ends at a vontex V+O, VEFL (: Theorem 1) n Vis a sola A #. lemma 6: A non-degenerate symmetric Come (A,AT) Los odd number of SNE. PS: (laim 0) SNE of (A,AT) = sol # claim 2 >> Sol # = FL\{0} Theorem I 3 FL = End points of pals It End points & paks in FLz is ordel ~1-11503/ is odd.

=> [FL\{0}] is odd.

& Complexity class PPAD Parity Argument for Directed Graphs.

* Definition: Given G=(V,E) where $V=\{0,\dots,2^{m}-1\}$. Let bit(v) be bit represent ob $v\in V$. Let $S\notin P$ be Bodlean circuit & directed edge (4,V)(F itt S(u) = V 4 p(v) = u. Suppose $P(S(\overline{0})) = \overline{0}$, $butS(P(\overline{0})) \neq \overline{0}$. Then every vertex in this graph 6 has both in-degree a out degree almost I. And o how in-degree zero 4 out degree I => 6 consists of directed pares 4 cycles and me & the path starts at o.

and point

and one " Goal: Find a non-zero end-point A my pak. It always exists -- just traverse the path starting at \bar{O} .

But this could be exponential length Lemma 6: PPAD C NP (TFNP) Of: Given V & P it is easy to check it $0 \vee \pm 0$ $2) \leq (p(\nu)) \pm V$ or $p(s(\nu)) \pm V$. $2) \leq (p(\nu)) \pm V$ or $p(s(\nu)) \pm V$. $2) \leq (p(\nu)) \pm V$ or $p(s(\nu)) \pm V$. $2) \leq (p(\nu)) \pm V$ or $p(s(\nu)) \pm V$. $2) \leq (p(\nu)) \pm V$ or $p(s(\nu)) \pm V$. $2) \leq (p(\nu)) \pm V$ or $p(s(\nu)) \pm V$. $2) \leq (p(\nu)) \pm V$ or $p(s(\nu)) \pm V$. $2) \leq (p(\nu)) \pm V$ or $p(s(\nu)) \pm V$. $2) \leq (p(\nu)) \pm V$ or $p(s(\nu)) \pm V$. $2) \leq (p(\nu)) \pm V$ or $p(s(\nu)) \pm V$. $2) \leq (p(\nu)) \pm V$ or $p(s(\nu)) \pm V$. $2) \leq (p(\nu)) \pm V$ or $p(s(\nu)) \pm V$. $2) \leq (p(\nu)) \pm V$.