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Witness - Presev\n'hg’ Evvor Reduction for QMA

Given a QMA verfier V satisfying with error Ffobabl‘h'{y at most iz
theve ¢ a new \/tvif\‘ev \/' with evror Probah('h'-k)' ab most 27 8

Which vses the same withess as V
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One can think of the apove cireot V as 4wo measurements that alternate
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In order o andlyze this, we need a technical tool called Jordan's lemma

that velates to ang\c between 4wo sobqaccc

Angle between two subSpqceS /
In 2-dimensions , we define omg'\c between two lines ('tlwough On{'gl'n) >
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In 3-dimensions, we. can define angle between two Flanc:s / / S /
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In 4-dimensions , we hawe $wo angles between two 2-D SUbspoces



let T = projector on a SUbsPace of (T.’&
e  we take o vector ¢ in QY
_H-M’> = onjedjon o:f- IL})> on the Sub_sFQCc_

Note T = T , So projecting ag’q\'n gives the same vector
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_”R q/ues‘l:l'on we Qrve 'try\'ng 10 ahswer :

given two Projectors T, & T, how do -t’ny intevact ?

Jordan's Lemma| For ony two projectors T, and T, in ¢4
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Theve exist o dccom]Dosition of @d into oythogonql 1- » 2-dimensiona|
subs?aces that are invariant onder koth T o T,

Mereower , incide each of these two- dimensional sob_cfaces
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Tr‘—]s- = WXV for some |vde $;

Similarly, T,s, = wXwil  for some |w€s;
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S = span § w>, W] = span § D, WDF for some vectors W) & w2
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T is clearly block - diagonql in the JTordan dccomfmihbn ahd Inside each S
’ﬂ'lTTL'YTJ_Ig_ = Yo Hwe Xwel logXvel = ps Xl

\“(-—J\_’.r—"

Mariott- Watrous Amplification  Let V_be the QMA venfier wWith ervor 5:13_-

We can assvme that onof l7r)J [P[ Vx QCCEPl:s f-rﬂ) e(0,)
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Proof To apply Jordans femma , consider the o Pprojectdrs
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Ls This s the on'ginal vewjffer \/x with 2/3 suceess fmba})i‘h'tjl

Note that ncceptance Probabfh'b/ of QMR Venfer V, = max dpenvalve  of T, T, TTy

T, just vestrcks the initbl states
to the form ho>@lo%

We. how apply Jordan's lemma to obtain 2- dimensional subs})aces N -
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We cloim that all the one dimensional blocks of T, ar zero

otherwise we wuld choose & weness n T and achieve svccess frobcﬂo:'hy/

0 ov L which contradicts ovv q:cumf—bi()m L
So, we cam focos on the dwo dimensiohal subspaces ;s
As we have seen Previously ,

T, = ? pilv; XVl

Thos, max eigeavaloe of T, T, T, = Maximom acceptance Prob. of V =max p



Analysis of new Verfier \l;

Let vs analyze what nappens when we give s u'n,oud: a vector WD in the 2-dimendond|
sobspace g = span § 1%), v;H2F = span § ) Iwet D

Recall that ’n”: liXvel  and Tl'l: lwXw; | and applying either One. we yemain
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Now , f xec L , we know that Pe > 2/3 for some ¢ and wve Frov:'dc v,;) as withess

So, pictore looks like.
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So, if we do k iterations, atleast 2?5k of the tmes & =4y, ih expectation
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V, accepts with 'Probabilf’q S

I (9> = WD ,then the probabirlies of ved and black edges get owrbched
and the proof follows
Otherwise , 6he can wite WJ?2= Za; V) ond show that probab/'lfi;)/

ot "11" or "00" is stul atmost = %—. ,ho matter the curvent state

One. Application of |Nitness- presewvinp- Amplfication

C!assicqlly we know that NPlog = p where NPlog denotes the com)vlex'u;y class where
withesses ove OClog inru’c-siu)

Withess ]Drc,serw'ng' amylfﬁ'ca’cl‘on allows one 1o show a simlar characterrzation for QMA

You will be asked 1o show this in the exercises . The proof relies on 2he fact -that witness size
does not ihcreare ( tpo much)

NEXT TIME Com)vlcte Problems for QMA




Rroof of Tordan's Lemma Consider the matix TT,+ TN

This is a Hermthon matix and can be syecbalb/ c{ecamfowi
T+, = 22 Xl
We shall show that 1Wod}'s cah be partitioned inte sets of

Size one ond two where each set <pans an invariant
cobgFQCe

Toke an egenvector 1> :then TRV + T, = A VD
© If WY e span(vD>) ,then so is TP
This gives a one- dimensiona) invanant  subspace span SARY;
Note Tlo> = WY or T I>=0
and same for T,
® I T V) ¢ srqn(lv;,)) , consider the 2-dimensional Subsche
S=span {195, TLID?
“This Ic an invaviant subspace for T, since
T, (alve> + BT 1D) = o T oy 2 4 ?Trlzlv;) = (e ) TV €S

T s also {nhvariant Fov TT, since
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Since Ty ond T, are both invomant for S, so is T+,
The vector orthogonal  |v) in § is also some other eigenvector (y;)
It is also easy to cheek 4hat T and T, are rank -one projectove when vestickd to S o



