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LECTURE 12 (February 26th)

TODAY Near-term Quantum Advantage

Yz-search problem is in BQP" provable quantum advantage o we can instantiate

not in BPpU 3 with a cryptographic hash function

& in NPO 3 verifiable in poly-time by classical algorithms

But the problem is that the quantum circuit to solve it can't be implemented on
current quantum devices which are noisya limited to small-depth computation

Near-term experiments are based on random circuit or boson sampling

Random Circuit Sampling
RandonQuantum E

Given a random quantum circuit obtained from a "simple" family , sample
from the output distribution

Boson sampling

protons * 08 Gi mose sample from output
distribution of boson

sampling experiment
Random beamsplitters

These are near-tern , we have some evidence of quantum advantage , although there is
still a lot we don't know but not verifiable easily

Holy grail = Provable quantum advantage + Near-term + Verifiable

Now we are goi to focus on Random circuit sampling& consider what evidence~

n&
of quantum advantage do we have

.
We won't cover boson sampling here

Note : Both these tasks are practically useless (except fornicybe generating randomness]
but for now we want to demonstrate quantum advantage experimentally

Marning : This is a rapidly evolving field and we are only going to talk about some
initial results.

Practically, it is not clear whether the evidence is robust in the presence of
noise and whether we have effectively demonstrated quantum advantage
since these experiments are hard to scalea Verify

①



sampling from the output distribution of a quantum circuit is #P-hard
↳ count # solutions to

-> SAT-formula
I a SAT formula

!= Eesa(4(x)
↳ output qubit

# [Output is 1] = Etisfyingassignments
2π

# P - is a counting complexity class not a decision one

The closest decision class is PP which we recall is the

class of languages where poly-time randomized algorithms
can do better than random guessing

It can also be described as

↑P = output the highest order bit of solutions to a #P-problem

Also
,
pPP = PHP

solving-a #P-hard problem is as hard as solving an NP problem
but a very well-known theorem of Toda says that in fact

PH = p#P
,
so it is even more difficult than the entire polynomial hierarchy

Above we encoded a #P-complete problem (#SAT) in the guise of computing- the acceptance
probability of a quantum circuit exactly

We don't believe quantum circuits can solve NP or #P-complete problems in poly-time

But this is different from problems in BQP where we don't know the exact

acceptance probabilities

This seems promising but we need simpler classes of guantum circuits
and need that this is robust to errorsa noise

which exact sampling is not

In order to do this
,
we need the notion of postselectiona the complexity class

postBQP
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RostBQP

- postselection bits PE 20, 13
Poly(M

#it- output bit A

A problem is in postBQP if

(IP) postselection bits = 0 ....0) > 2
Poly

(2) IP (A is correct /P = 0 ... 0) > E => This can de amplified

We are conditioning on an event of exponentially small probability

This is not physically viable but is a very powerful theoretical tool

Postselection gives a lot of computational power

NP E postBQP special state

->
SAT formula

&
kp = 6Fe(214 /q(XK) + 55/abort e

↳ = 1

TGR

If we postselect on 2"P qubit being-In

unnormalized (4) =

Eq +ElaborSee

If 4 is unsatisfiable measuring first register gives about

otherwise in the worst-case 4 has a single satisfying assignment x
*

so the unnormalized state is

(i + 15 labora

③

Dream objecture There exists a simple family of quantum circuits sit
.

approximating Ky/C16")12 for most outcomes y e50 , 13 "
is #P-hard when C is drawn at random

This ignores noise in the quantum circuit which is also something
one has to take into account but we shall ignore it until the end



↓
xE El + Elabort

# (We measure x
*

] > 1 - 2
On

We can define the classical version postBPP similarly and the above also works
for post BPP

Theorem postBQP = PP

postBQP -
> PP follows from just minor modifications to the BQP =PP

proof we saw earlier

The other direction is non-trivial and was shown by Aaronson

We are not going to cover the proof in the lecture but I might
try to make an exercise out of it

Theorem postBQP = postBPP => PH collapses to the third level

-
PP

= p#PProof Known results say postBPP [NpNPNP-sP and PH = I
-

Thus
, postBQP =postBPP implies

PHE pPP =
pPostBQP = pPostBPP= pEB a St

Now the punchline is , you can take a simple quantum circuit class C

for example ,

IQP circuits which look like H*DH* where D is

a diagonal unitary in the computational basis

These circuits are way less powerful than BQP but if we give
then the power of postselection , they become as powerful as postBQP

Theorem postIQP = postBQP
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Now
- if there was an exact classical sampler to sample from output distribution

for an IQP circuit
,
then we could classically post select and

postBPP = postIQP =POstBQP = PH collapses

These circuits cannot solve many problems but for the specific problems
they solve ,

a classical computer could not solve then unless PH

collapses

The same argument also works if we have a multiplicative approximation
with a classical sampler ,

i . e .

↓ outcomes yAclassical sampler outputs- (Fig ,
+ +E)

# [qranton circuit outputs y]

Creats &We have shown existence which says in the worst-case

sampling from an IQP circuit is hard classically
but if it was a single pathological case ,

it may not

be useful experimentally

Can we say that on average this task is hard ?

& Again the above assumes exact or multiplicative error which is
not experimentally feasible

Can we say that this is still hard if the classical

sampler samples from a distribution that is E-close

in total variation distance ?
↑ classical sampler

TV distance blu distributions p & 9-> quantum sampler

=

= Seco,n'P,y)
- 9,y3 where 9- ) = Ky/CIO7P

Let us see how to handle careat & first

Suppose a classical sampler outputs from a distribution that is 3-close in TV-dist .

There IEy [IPc(y) -

P ,
(y))] -

=> For 99% of y's . (Pc(y) - Pa(y)) = 2

④

Worst-case to Average-case Reduction



From sampling to estimating probabilities for a randomized poly-time sampler .

# [A outputs y] = #randomchoiceshat lead to y 3= This is a problem in #P

(poly(h)

A classic result of Stockmeyer says that #solutions to a #P-problem can be multiplicatively
approximated with arandomized poly-time algorithm that has an NP-oracle

Theorem Let f : 30 ,
13" -> 20 ,

13" be the classical sampler that takes
(Stockmeyer) as input description of circuit and some random bits

,
and let y +20 ,

13"
.

NP

There is a FBPP algorithm that runs in poly(n , /8) time and

outputs Py satisfying 1

Py E [118] · R(f(x) = y ]
xEE0, 13 M

Applying Stockmeyer's result with 3 = <polych) ,
we get an estimate py in poly(n) time

where Py -> (+ FolT) Py

This means for most yo Py - ('F Toy Py (Toyin) (9) + 0 (= 4)
-

R

=> By E (IF Polyi) by =01 n) for most y's . ) Thisistruefora

Now suppose we sample a random circuit (ft
:
then

#
c,y

/ e (14) & + (e)]0e9

TIME Starting from the above
,
what other assumptions do we need on C

to conclude that no TV-distance error sampler exists ?
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