
LECTURE 27 (April 29th)

#DAY PRS (wrapupI
Pseudorandom Unitaries & Unitaryt designs

#CAP PRS construction

14f)= (x) where f: -2013 is a uniformly random boolean functiona

Replace f with t-wise independent function to get a t-design and with a pseudorandom
function to get aPseudorandom state family

Theorem (4) is a 0() - approximate t- design in trace distance
.
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In order to do this
, let us give an explicit basis for the symmetric subspace
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The collection of all such distinct rectors give an orthonormal basis for Syndit
( We won't prove it here) Q

The collection of all such distinct rectors give an orthonormal basis for Syndit
( We won't prove it here)



How many such rectors are there ? The rectors correspond to "types"

If all X.. ... Xt are distinct
-
# rectors = (E)

If some of them are Is ,
some areis, , ...

o and so on

In general , a type of a vector is given by (c , . . ... (d) Where co are integers
and Ec; = t

Total # of vectors = dim (Symd
, t)

= #of solutions to Sci = + With (i, 0
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The "distinct types correspond to having some tout ofd ci's being I's
and rest being O's

.

The span of these rectors will play a key role , so letvs define

SymxDist to be the subspace spanned by these rectors
and PsymxDist to be the maximally mixed state on this subspace

Note that the bulk of the symmetric subspace is made by the
distinct rectors since
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This easily implies the following claim (whose details are left to exercises)
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To complete the proof of the theoremo we shall sketch a proof of the following
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Proof sketch for Claim 2 Recall that (4)=
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The contribution of all the non-distinct terms can be bounded by
the fraction of such terms among all at toples. This is the

probability of seeing a collision when drawing telements uniformly
from (b) & is at most +d

Thuse Ef14fX411
**

= Psymdist + err where llervlet

Pseudorandom Unitaries & Unitary t-designs

A Haar random unitary on n-qubits is a "uniformly random" 2
* x2" Unitary matrix

The notion of unitary t-designs and pseudorandom unitaries are two different ways
of derandomizing a Haar random unitary

Unitary -design A distribution over dxd unitary matrices ,
where d = 2"

·
is called

a unitary +- design if for all 1437 .

*t

#i
I

~ #i
-

ut
Unt-design (x[E Un Haar*
In other words

, given t parallel applications of V on the first register I /on nt-qubits)-
denoted byU*t no procedure even efficient can distinguish the two · Here, t is fixed beforehand

#Note: A state t-design is just a weaker case of this , just take any unitary
①t

that maps 10") + 10
*+

where 10) is a state tdesign

Then
, taking 14]

** 10
*
above

-
we also get a state t-design from the above

The guarantee above is for all states (4) which make this a lot more challenging
task

There are two notions of approximations that are usually considered

Additive Error This measures the error in the trace norm : 11) we have
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Multiplicative Error #14)
,

We have

#in HaarS
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#Ote : Multiplicative error t-design also implies additive error t-design with the same E

parameter , but the other way could increase the error paameter by doct) factor

Pseudorandom Unitary A family of n-arbit unitaries [Un3
Reso ,Bh

is called a pseudorandom unitary
if

11) Given KE50
,

13 "
o UK can be implemented in poly (n) time

(2) No poly-time distinguisher A can query the unitary and distinguish
a random UK from a Haar random unitary ,

1
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ID: D
If the distinguisher A is only allowed to make parallel queries to
the unitary , we say its a non-adaptive PRV .

Such an algorithm A
is given by

-

>up)
followed by a measurementquitars

=

Furt-

Note that the corresponding mixed states before measurement are

us 3) vs EveHaar 34

This is almost the same as a t-desion but here t=poly() is not
known in advance

⑤



#ote : PRVs imply PRS similar to what we discussed before for -design

Applications & Constructions

A random quantum circuit of large enough depth gives a t-design and there are interesting
applications in random circuit sampling. One of the focus of tdesign construction is to get
a very efficient construction of t-designs with small size and depth

One can also conjecture that a random quantum circuit of poly(n) depth is a PRU but if
we could prove this without any assumption -

we would show that BQP PSPACE

Up until recentlye there was no known construction for a PRU but in a recent paper ofmine
*#

with Metger - Poremba and Yven
,

we showed that the following simple construction gives a

#

PRU as well as a Unitary t-design (Caveat : in the current version
,

we have an isometry
that maps i to n + logan qubits instead of a unitary mappinga to n qubits)

Construction
-

Leta be any unitary 2-design (exact constructions are known for t =2)

Let P = CIxTx)) be a random permutation matrix (it is a random permutation of 50 , 1")
XEd0 , 134

Let F = & (1)f)(xXX) be a random #1 diagonal matrix If is uniformly random
XE20

, 131 boolean function)

Ther v = PFC

· is a pseudorandom unitary if we replace F & P with pseudorandom
functions & permutations

(additive errors

· is a to design if we replace them with their t-wise independent versions .

This gives a simple and more efficient t-design construction .

Open problem Find interesting applications of PRVs

Currently the biggest motivation comes from studying black holes
where PRUs are used to model black hole dynamics so that

the black hole can efficiently do it but the output looks Haar
random to every feasible experiment that can be done

⑥


