
Parallel Programming Models

Lawrence Rauchwerger
rwerger@illinois.edu

Course Objective

! Introduction to Parallelism
! Introduction to Programming Models
! Some Performance Considerations
! CnC, Cuda, STAPL, StreamIt, Halide, MLIR, etc.

Most of the material in this course has been adapted from
various (cited) authoritative sources.

Lecture Plan

! Introduction to Parallelism
! Introduction to Programming Models
! Shared Memory Programming
! Message Passing Programming
! PGAS Languages
! CnC, Cuda, STAPL, StreamIt, Halide, MLIR

Most of the material in this course has been adapted from
various (cited) authoritative sources.

Tentative Syllabus

! Introduction to Parallel Computer Systems
– Parallel Architectures:

Brief history and taxonomy
– Today: Multicores, Clusters (of multicores,

multi socket multicores), accelerators, e.g.,
GPGPU, TPU), i.e., systems on a chip.

Performance

! Performance issues in parallel
programming
– Locality and communication
– Load balance
– Parallelism or lack of it (synchronizations)
– The issues are coupled ... How do we deal

with them ? What is most important ?

Programming Models

! Taxonomy of programming models
(languages, directives, libraries, etc.)
– Examples from each area: MPI, OpenMP,

UPC, TBB, STAPL

! Generic Libraries I
– TBB, STAPL, etc

! Programming Models -- Languages
! Languages: UPC, X10, MapReduce, Julia

etc.

Applications with Domain Specific

Libraries and Languages

! Building applications using
– Doman Specific Libraries
– Domain Specific Languages (DSL)
– e.g., STAPL, TBB, TENSORFLOW

! High level building blocks, fine grain
program specification with performance
control (Halide)

! MLIR – Use of compiler IR to control
performance .. Complicated ….

Expectations

! Pick a topic – make a presentation
Mid Sept. : Choose a presentation topic

! Pick a topic – do a project
End of September – present project topic

Table of Contents

! Introduction to Parallelism
– What is Parallelism ? What is the Goal ?

! Introduction to Programming Models
! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models
! PGAS Languages
! Other Programming Models

Introduction to Parallelism

! Sequential Computing
– Single CPU executes stream of instructions.

Adapted from: http://www.llnl.gov/computing/tutorials/parallel_comp

Introduction to Parallelism

! Parallel computing
– Partition problem into multiple, concurrent

streams of instructions.

Classification
Flynn’s Taxonomy (1966-now) Nowadays

SISD
Single Instruction
Single Data

SIMD
Single Instruction
Multiple Data

SPMD
Single Program
Multiple Data

MISD
Multiple Instructions
Single Data

MIMD
Multiple Instructions
Multiple Data

MPMD
Multiple Program
Multiple Data

• Execution models impact the above programming model
• Traditional computer is SISD
• SIMD is data parallelism while MISD is pure task parallelism

• MIMD is a mixed model (harder to program)
• SPMD and MPMD are less synchronized than SIMD and MIMD
• SPMD is most used model, but MPMD is becoming popular

Introduction to Parallelism

! Goal of parallel computing
– Save time - reduce wall clock time.

! Speedup -

– Solve larger problems - problems that take
more memory than available to 1 CPU.

Reduce wall clock time

! Methods
– Parallelizing serial algorithms (parallel loops)

! Total number of operations performed changes only slightly
! Scalability may be poor (Amdahl’s law)

– Develop parallel algorithms
! Total number of operations may increase, but the running time

decreases

! Work Complexity of
– Serialized Parallel algorithm = Optimal Seq. Algorithm
– Serialized Parallel algorithm > Optimal Seq. Algorithm.
è sub-optimal sequential complexity (not good)

Performance Models

! Abstract Machine Models (PRAM, BSP, and
many, many others)
– Allow asymptotical analysis and runtime estimations
– Often inaccurate for selecting the right

implementation/algorithm on a given architecture

! Programming Primitives Behavior
– Allow the selection of the right implementation
– Increases programming effort

Abstract Machine
! PRAM (Parallel RAM, shared memory)

– Processors access a shared flat memory
– Performing an operation or accessing a memory location has cost

= 1
! BSP (Bulk Synchronous Parallel, distributed memory)

(Leslie Valiant)
– Computation proceeds through supersteps
– Cost of a superstep is w+hg+l

– w is the time for computing on local data
– h is the size of the largest message sent
– g and l are architectural parameters describing network bandwidth

and latency, respectively
! Nested BSP (new version form Valiant)

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models

– Parallel Execution Models
! Models for Communication
! Models for Synchronization
! Memory Consistency Models
! Runtime systems

– Productivity
– Performance
– Portability

! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models
! PGAS Languages
! Other Programming Models

Parallel Programming Models
Many languages and libraries exist for creating
parallel applications.
Each presents a programming model to its users.

During this course, we’ll discuss criteria for evaluating a
parallel model and use them to explore various approaches.

Charm++
UPC
STAPL
X10
Fortress
Chapel

Linda
MapReduce
Matlab DCE
CnC
Cuda
Streamit,
Brooks

OpenMP
Pthreads
Cilk
TBB
HPF
MPI

Programming Models Evaluation
What should we consider when evaluating a parallel
programming model?

– Parallel Execution Model
– Productivity
– Performance
– Portability

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models

– Parallel Execution Model
! Models for Communication
! Models for Synchronization
! Memory Consistency Models
! Runtime systems

– Productivity
– Performance
– Portability

! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models
! PGAS Languages
! Other Programming Models

Parallel Execution Model

Operating System Kernel SchedulerKernel Threads I/O Synchronization

Memory Management

Parallelism Communication

Scheduling Load Balancing

Runtime System

Parallel
Programming

Library/Language

Application

Synchronization

CommunicationParallelism Synchronization Consistency

System independent abstraction

Consistency

User view

PPL/L view

Functional extension of the OS
in user space

Parallel I/O

PortabilityPerformanceProductivityExec Model

Parallel Execution Model

! Parallel Programming Model (user view)
– Parallelism
– Communication
– Synchronization
– Memory consistency

! Runtime System (RTS)
– Introduction, definition and objectives
– Usual services provided by the RTS
– Portability / Abstraction

PortabilityPerformanceProductivityExec Model

Parallel Programming Model (user view)

! Parallelism

! Communication

! Synchronization

! Memory consistency

PortabilityPerformanceProductivityExec Model

! User not required to be aware of the parallelism
– User writes programs unaware of concurrency

! Possible re-use previously implemented sequential algorithms
! Often minor modifications to parallelize

– User not required to handle synchronization or communication
! Dramatic reduction in potential bugs
! Straightforward debugging (with appropriate tools)

! Productivity closer to sequential programming
! Performance may suffer depending on application
! E.g. Matlab DCE, HPF, OpenMP*, Charm++*

Implicit parallelism (single-threaded view)

* at various levels of implicitness

PPM – Implicit Parallelism
PortabilityPerformanceProductivityExec Model

PPM – Explicit Parallelism

! User required to be aware of parallelism
– User required to write parallel algorithms

! Complexity designing parallel algorithms
! Usually impossible to re-use sequential algorithms (except for

embarrassingly parallel ones)
– User responsible for synchronization and/or communication

! Major source of bugs and faulty behaviors (e.g. deadlocks)
! Hard to debug
! Hard to even reproduce bugs

! Considered low-level
– Productivity usually secondary
– Best performance when properly used, but huge development cost
– E.g. MPI, Pthreads

Explicit parallelism (multi-threaded view)

PortabilityPerformanceProductivityExec Model

PPM – Mixed Parallelism

! Basic usage does not require parallelism awareness
! Optimization possible for advanced users

! Benefits from the two perspectives
– High productivity for the general case
– High performance possible by fine-tuning specific areas of the

code
! E.g., STAPL, Chapel, Fortress

Mixed view

PortabilityPerformanceProductivityExec Model

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models

– Parallel Execution Model
! Models for Communication
! Models for Synchronization
! Memory Consistency Models
! Runtime systems

– Productivity
– Performance
– Portability

! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models
! PGAS Languages
! Other Programming Models

PPM – Explicit Communication

! Message Passing (two-sided communication, P2P)
– User explicitly sends/receives messages (e.g., MPI)
– User required to match every Send operation with a Receive
– Implicitly synchronizes the two threads

! Often excessive synchronization (reduces concurrency)
! Non-blocking operations to alleviate the problem (e.g., MPI_Isend/Recv)

! One-sided communication
– User uses get/put operations to access memory (e.g., MPI-2,

GASNet, Cray T3D)
– No implicit synchronization (i.e., asynchronous communication)

Explicit Communication

MPI_Send

MPI_Recv

MPI_Put

[nothing]

PortabilityPerformanceProductivityExec Model

PPM – Explicit Communication

! Based on Message Passing
! Messages activate a handler function or method on the remote side
! Asynchronous

– No return value (no get functions)
– Split-phase programming model (e.g. Charm++, GASNet)

! Caller provides a callback handler to asynchronously process “return” value

! Synchronous
– Blocking semantic (caller stalls until acknowledgement/return is received)
– Possibility to use get functions

! Mixed (can use both)
– E.g., ARMI (STAPL)

Explicit Communication – Active Message, RPC, RMI

PortabilityPerformanceProductivityExec Model

PPM – Implicit Communication

! Communication through shared variables
! Synchronization is primary concern

– Condition variables, blocking semaphores or monitors
– Full/Empty bit

! Producer/consumer between threads are expressed with
synchronizations

! Increases productivity
– User does not manage communication
– High risk of introducing bugs

Implicit Communication

PortabilityPerformanceProductivityExec Model

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models

– Parallel Execution Model
! Models for Communication
! Models for Synchronization
! Memory Consistency Models
! Runtime systems

– Productivity
– Performance
– Portability

! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models
! PGAS Languages
! Other Programming Models

PPM – Explicit Synchronization

! Critical section / locks
– One thread allowed to execute the guarded code at a time

! Condition variables / blocking semaphores
– Producer/consumer synchronization
– Introduces order in the execution

! Monitors / counting semaphores
– Shared resources management

! Barrier / Fence (global synchronization)
– Threads of execution wait until all reach the same point

! E.g., Pthreads, TBB, OpenMP

Explicit Synchronization

PortabilityPerformanceProductivityExec Model

PPM – Implicit Synchronization

! Hidden in communication operations (e.g., two-sided
communication)

! Data Dependence Graph (DDG)
– PPL synchronizes where necessary to enforce the dependences
– E.g., STAPL, CnC

! Distributed Termination Detection
– When implemented as background algorithm (e.g., in Charm++,

STAPL)

! Improved productivity
– Less bugs from race conditions, deadlocks …

! E.g., STAPL, Charm++, MPI-1 and GASNet (to a certain extent)

Implicit Synchronization

PortabilityPerformanceProductivityExec Model

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models

– Parallel Execution Model
! Models for Communication
! Models for Synchronization
! Memory Consistency Models
! Runtime systems

– Productivity
– Performance
– Portability

! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models
! PGAS Languages
! Other Programming Models

Runtime System (RTS)

! Introduction
– Definition
– Objectives

! Usual services provided by the RTS

! Portability / Abstraction

PortabilityPerformanceProductivityExec Model

RTS – Introduction

! Software layer
– Linked with the application
– Executes in user space

! Provides applications with functionalities
– Missing in the Operating System and drivers
– More advanced/specialized than the OS counterpart

! Virtualizes OS and Architecture

PortabilityPerformanceProductivityExec Model

RTS – Definition*
Functional extension of the Operating System in user
space

– No precise definition available
– Fuzzy functional boundary between RTS and OS

! Services are often a refined or extended version of the OS
! Functional redundancy with OS services

" Avoid entering Kernel space
" Provide reentrancy
" E.g., threading, synchronization, scheduling …

– Widely variable set of provided services
! No minimum requirements
! No limit on the amount of functionality

*Non-formal definition

PortabilityPerformanceProductivityExec Model

RTS – Objectives
Objectives of RTS for Parallel Programming Languages/Libraries:

– Enable portability
! Decouple the PPL from the system
! Exploit system-specific optimized features (e.g., RDMA, Coprocessor)

– Abstract complexity of large scale heterogeneous
systems to enable portable scalability
! Provide uniform communication model
! Manage threading, scheduling and load-balancing
! Provide parallel I/O and system-wide event monitoring

– Improve integration between application and system
! Use application runtime information

" Improve RTS services (e.g., scheduling, synchronization)
" Adaptive selection of specialized code

PortabilityPerformanceProductivityExec Model

RTS – Provided Services
! Common RTS provide a subset of the following (not limited to)

– Parallelism
! Type of parallelism (API)
! Threading Model (underlying implementation)

– Communication
– Synchronization
– Consistency
– Scheduling
– Dynamic Load Balancing
– Memory Management
– Parallel I/O

! Some functionalities are only provided as a thin abstraction

layer on top of the OS service

PortabilityPerformanceProductivityExec Model

RTS – Flat Parallelism

! All threads of execution have the same status
– No parent/child relationship

! Threads are active during the whole execution
! Usually constant number of threads of execution

! Well adapted for problems with large granularity
! Difficult to achieve load-balance for non-embarrassingly

parallel applications
! E.g. MPI

Parallelism types – Flat Parallelism

PortabilityPerformanceProductivityExec Model

RTS – Nested Parallelism

! Parallelism is hierarchal
– Threads of execution can spawn new threads to execute their task
– Exploits multiple levels of parallelism (e.g. nested parallel loops)

! Good affinity with heterogeneous architectures (e.g.
clusters of SMPs)*
– Allows the exploitation of different levels of granularity

! Natural fit for composed parallel data structures*
– E.g. p_vector< p_list< Type > >

! E.g. OpenMP (not quite there) , Cilk, TBB

Parallelism types – Nested Parallelism

* Also for dynamic parallelism.

PortabilityPerformanceProductivityExec Model

RTS – Dynamic Parallelism

! Threads of execution are dynamically created whenever
new parallelism is available
– Exploits any granularity of parallelism available
– Necessary to achieve scalability for dynamic applications

! Improves load-balancing for dynamic applications
– Work stealing
– Thread migration

! Parallelism can be dynamically refined (e.g. mesh
refinement*)

! E.g. STAPL, Charm++, AMPI, Chapel

* Can also be achieved by redistributing the data.

Parallelism types – Dynamic Parallelism

PortabilityPerformanceProductivityExec Model

RTS – Threading Models (1:1)

1:1 threading model: (1 user-level thread mapped onto 1 kernel thread)

– Default kernel scheduling
! Possibility to give hints to scheduler (e.g., thread priority

levels)
! Reduced optimization opportunities

– Heavy kernel threads
! Creation, destruction and swapping are expensive
! Scheduling requires to cross into kernel space

– E.g., Pthreads

PortabilityPerformanceProductivityExec Model

RTS – Threading Models (M:1)

M:1 threading model: (M user-level threads mapped onto 1 kernel thread)

– Customizable scheduling
! Enables scheduler-based optimizations (e.g., priority

scheduling, good affinity with latency hiding schemes)
– Light user-level threads

! Lesser threading cost
" User-level thread scheduling requires no kernel trap

– Problem: no effective parallelism
! User-level threads’ execution serialized on 1 kernel thread
! Often poor integration with the OS (little or no communication)
! E.g., GNU Portable Threads

PortabilityPerformanceProductivityExec Model

RTS – Threading Models (M:N)

M:N threading model: (M user-level threads mapped onto N kernel threads)

– Customizable scheduling
! Enables scheduler-based optimizations (e.g. priority scheduling,

better support for relaxing the consistency model …)
– Light user-level threads

! Lesser threading cost
" Can match N with the number of available hardware threads : no kernel-

thread swapping, no preemption, no kernel over-scheduling …
" User-level thread scheduling requires no kernel trap

! Perfect and free load balancing within the node
" User-level threads are cooperatively scheduled on the available kernel

threads (they migrate freely).

– E.g., PM2/Marcel (Univ. of Bordeaux)

PortabilityPerformanceProductivityExec Model

RTS – Communication

! Systems usually provide low-level communication primitives
– Not practical for implementing high-level libraries
– Complexity of development leads to mistakes

! Often based on other RTS libraries
– Layered design conceptually based on the historic ISO/OSI stack
– OSI layer-4 (end-to-end connections and reliability) or layer-5 (inter-

host communication)
– Communication data is not structured
– E.g., MPI, Active Message, SHMEM

! Objective: Provide structured communication
– OSI layer-6 (data representation) – data is structured (type)
– E.g., RMI, RPC

PortabilityPerformanceProductivityExec Model

RTS – Synchronization

! Systems usually provide low-level synchronization
primitives (e.g., semaphores)
– Impractical for implementing high-level libraries
– Complexity of development leads to mistakes

! Often based on other RTS libraries
– E.g., POSIX Threads, MPI …

! Objective: Provide appropriate synchronization primitives
– Shared Memory synchronization

! E.g., Critical sections, locks, monitors, barriers …
– Distributed Memory synchronization

! E.g., Global locks, fences, barriers …

PortabilityPerformanceProductivityExec Model

RTS – Consistency

! In shared memory systems
– Use system’s consistency model
– Difficult to improve performance in this way

! In distributed systems: relaxed consistency models
– Processor Consistency

! Accesses from a processor on another’s memory are sequential
! Limited increase in level of parallelism

– Object Consistency
! Accesses to different objects can happen out of order (inconsistent)
! Uncovers fine-grained parallelism

" Accesses to different objects are concurrent
" Potential gain in scalability

PortabilityPerformanceProductivityExec Model

RTS – Scheduling

! Available for RTS providing some user-level threading
(M:1 or M:N)

! Performance improvement
– Threads can be cooperatively scheduled (no preemption)
– Swapping does not require to cross into kernel space

! Automatically handled by RTS

! Provide API for user-designed scheduling

PortabilityPerformanceProductivityExec Model

RTS – Dynamic Load Balancing

! Available for RTS providing some user-level threading
(M:1 or M:N)

! User-level threads can be migrated
– Push: the node decides to offload part of its work on another
– Pull: when the node idles, it takes work from others (work

stealing)

! For the M:N threading model
– Perfect load balance within the node (e.g., dynamic queue

scheduling of user-level threads on kernel threads)
– Free within the node (I.e., no additional cost to simple

scheduling)

PortabilityPerformanceProductivityExec Model

RTS – Memory Management

! RTS often provide some form of memory management
– Reentrant memory allocation/deallocation primitives
– Memory reuse
– Garbage collection
– Reference counting

! In distributed memory
– Can provide Global Address Space

! Map every thread’s virtual memory in a unique location
– Provide for transparent usage of RDMA engines

PortabilityPerformanceProductivityExec Model

RTS – Parallel I/O

! I/O is often the bottleneck for scientific applications
processing vast amounts of data

! Parallel applications require parallel I/O support
– Provide abstract view to file systems
– Allow for efficient I/O operations
– Avoid contention, especially in collective I/O

! E.g., ROMIO implementation for MPI-IO

! Archive of current Parallel I/O research:
http://www.cs.dartmouth.edu/pario/

! List of current projects:
http://www.cs.dartmouth.edu/pario/projects.html

PortabilityPerformanceProductivityExec Model

RTS – Portability / Abstraction

! Fundamental role of runtime systems
– Provide unique API to parallel programming libraries/languages
– Hide discrepancies between features supported on different

systems

! Additional layer of abstraction
– Reduces complexity
– Encapsulates usage of low-level primitives for communication and

synchronization

! Improved performance
– Executes in user space
– Access to application information allows for optimizations

PortabilityPerformanceProductivityExec Model

Some related References
! Hill, M. D. 1998. Multiprocessors Should Support Simple Memory-Consistency Models.

Computer 31, 8 (Aug. 1998), 28-34. DOI=http://dx.doi.org/10.1109/2.707614

! Adve, S. V. and Gharachorloo, K. 1996. Shared Memory Consistency Models: A Tutorial.
Computer 29, 12 (Dec. 1996), 66-76. DOI=http://dx.doi.org/10.1109/2.546611

! Dictionary on Parallel Input/Output, by Heinz Stockinger, February 1998.

PortabilityPerformanceProductivityExec Model

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models

– Parallel Execution Model
! Models for Communication
! Models for Synchronization
! Cache Coherence for Shared Memory Processors (adapted from

Culler & Singh, Parallel Computer Architecture
! Memory Consistency Models
! Runtime systems

– Productivity
– Performance
– Portability

! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models
! PGAS Languages

Other Programming Models

Shared Memory
Multiprocessors

! Symmetric Multiprocessors (SMPs)
– Symmetric access to all of main memory from

any processor (a bit of a PRAM)

! Normal uniprocessor mechanisms to
access data (reads and writes)
– Key is extension of memory hierarchy to

support multiple processors

Supporting Programming
Models

– Address translation and protection in hardware
– Message passing using shared memory buffers

! can be very high performance since no OS
involvement necessary

– Focus here on supporting coherent shared
address space

Multiprogramming

Shared address space

Message passing Programming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication hardwaree

Physical communication medium

Hardware/software boundary

Natural Extensions of Memory
System

I/O devicesMem

P1

$ $

Pn

P1

Switch

Main memory

Pn

(Interleaved)

(Interleaved)

P1

$

Interconnection network

$

Pn

Mem Mem

(b) Bus-based shared memory

(c) Dancehall

(a) Shared cache

First-level $

Bus

P1

$

Interconnection network

$

Pn

Mem Mem

(d) Distributed-memory

Caches and Cache
Coherence

! Caches play key role in all cases
– Reduce average data access time
– Reduce bandwidth demands placed on

shared interconnect

Cache Coherence
! But private processor caches create a

problem
– Copies of a variable can be present in multiple

caches
– A write by one processor may not become

visible to others
! They’ll keep accessing stale value in their caches

– Cache coherence problem
– Need to take actions to ensure visibility

Focus: Bus-based,
Centralized Memory

! Shared cache
– Low-latency sharing and prefetching across

processors
– Sharing of working sets
– No coherence problem (and hence no false

sharing either)
– But high bandwidth needs and negative

interference (e.g. conflicts)
– Hit and miss latency increased due to intervening

switch and cache size

Focus: Bus-based,
Centralized Memory

Today: for multiprocessor on a chip (for small-scale
systems or nodes)

! Distributed memory
– Most popular way to build scalable systems,

discussed later

Outline

! Coherence and Consistency
! Snooping Cache Coherence Protocols
! Quantitative Evaluation of Cache

Coherence Protocols
! Synchronization
! Implications for Parallel Software

A Coherent Memory System

! Reading a location should return latest value
written (by any process)

! Easy in uniprocessors
– Except for I/O: coherence between I/O devices and

processors
– But infrequent so software solutions work

! uncacheable memory, uncacheable operations, flush pages,
pass I/O data through caches

! Would like same to hold when processes run on
different processors
– E.g. as if the processes were interleaved on a

uniprocessor

A Coherent Memory System

! But coherence problem much more critical in
multiprocessors
– Pervasive
– Performance-critical
– Must be treated as a basic hardware design issue

Cache Coherence Problem

I/O devices

Memory

P1

$ $ $

P2 P3

1
2

34 5

u = ?u = ?

u:5

u:5

u:5

u = 7

Cache Coherence Problem

– Processors see different values for u after event 3
– With write back caches, value written back to memory

depends on happenstance of which cache flushes or
writes back value when
! Processes accessing main memory may see very stale value

– Unacceptable to programs, and frequent!

Problems with the Intuition

! Recall: Value returned by read should be
last value written

! But “last” is not well-defined
! Even in seq. case, last defined in terms of

program order, not time
– Order of operations in the machine language

presented to processor
– “Subsequent” defined in analogous way, and

well defined

Problems with the Intuition

! In parallel case, program order defined
within a process, but need to make sense
of orders across processes

! Must define a meaningful semantics

Some Basic Definitions
! Extend from definitions in uniprocessors to

those in multiprocessors
! Memory operation: a single read (load), write

(store) or read-modify-write access to a
memory location
– Assumed to execute atomically w.r.t each other

! Issue: a memory operation issues when it
leaves processor’s internal environment and
is presented to memory system (cache, buffer
…)

Some Basic Definitions
! Perform: operation appears to have taken place, as

far as processor can tell from other memory
operations it issues
– A write performs w.r.t. the processor when a subsequent

read by the processor returns the value of that write or a
later write

– A read perform w.r.t the processor when subsequent
writes issued by the processor cannot affect the value
returned by the read

! In multiprocessors, stay same but replace “the” by
“a” processor
– Also, complete: perform with respect to all processors
– Still need to make sense of order in operations from

different processes

Sharpening the Intuition
! Imagine a single shared memory and no

caches
– Every read and write to a location accesses the

same physical location
– Operation completes when it does so

! Memory imposes a serial or total order on
operations to the location
– Operations to the location from a given processor

are in program order
– The order of operations to the location from

different processors is some interleaving that
preserves the individual program orders

Sharpening the Intuition
! “Last” now means most recent in a hypothetical

serial order that maintains these properties
! For the serial order to be consistent, all processors

must see writes to the location in the same order (if
they bother to look, i.e. to read)

! Note that the total order is never really constructed
in real systems
– Don’t even want memory, or any hardware, to see all

operations

! But program should behave as if some serial order
is enforced
– Order in which things appear to happen, not actually

happen

Formal Definition of Coherence
! Results of a program: values returned by its read operations
! A memory system is coherent if the results of any execution of a

program are such that at each location, it is possible to construct a
hypothetical serial order of all operations to the location that is
consistent with the results of the execution and in which:

! 1. operations issued by any particular process occur in the order
issued by that process, and

! 2. the value returned by a read is the value written by the last write
to that location in the serial order

! Two necessary features:
– Write propagation: value written must become visible to others
– Write serialization: writes to location seen in same order by all

! if I see w1 after w2, you should not see w2 before w1
! no need for analogous read serialization since reads not visible to

others

Cache Coherence Using a Bus

! Built on top of two fundamentals of
uniprocessor systems
– Bus transactions
– State transition diagram in cache

! Uniprocessor bus transaction:
– Three phases: arbitration, command/address,

data transfer
– All devices observe addresses, one is

responsible

Cache Coherence Using a Bus

! Uniprocessor cache states:
– Effectively, every block is a finite state

machine
– Write-through, write no-allocate has two

states: valid, invalid
– Writeback caches have one more state:

modified (“dirty”)

! Multiprocessors extend both these
somewhat to implement coherence

Snooping-based Coherence

! Basic Idea
! Transactions on bus are visible to all

processors
! Processors or their representatives can

snoop (monitor) bus and take action on
relevant events (e.g. change state)

Implementation
! Cache controller now receives inputs from both

sides:
– Requests from processor, bus requests/responses from

snooper

! In either case, takes zero or more actions
– Updates state, responds with data, generates new bus

transactions

! Protocol is distributed algorithm: cooperating state
machines
– Set of states, state transition diagram, actions

! Granularity of coherence is typically cache block
– Like that of allocation in cache and transfer to/from cache

Coherence with Write-through
Caches

– Key extensions to uniprocessor: snooping,
invalidating/updating caches
! no new states or bus transactions in this case
! invalidation- versus update-based protocols

– Write propagation: even in inval case, later reads will see
new value: inval causes miss on later access, and memory up-to-
date via write-through

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

Write-through State Transition
Diagram

I

V

PrRd/BusRd

PrRd/—

PrWr/BusWr

BusWr/—

Processor-initiated transactions

Bus-snooper-initiated transactions

PrWr/BusWr

Write-through State Transition
Diagram
– Two states per block in each cache, as in

uniprocessor
! state of a block can be seen as p-vector

– Hardware state bits associated with only blocks
that are in the cache
! other blocks can be seen as being in invalid (not-

present) state in that cache

– Write will invalidate all other caches (no local
change of state)
! can have multiple simultaneous readers of block, but

write invalidates them

Is it Coherent?

! Construct total order that satisfies program
order, write serialization?

! Assume atomic bus transactions and memory
operations for now
– all phases of one bus transaction complete before

next one starts
– processor waits for memory operation to complete

before issuing next
– with one-level cache, assume invalidations applied

during bus xaction
– (we’ll relax these assumptions in more complex

systems later)

Is it Coherent?

! All writes go to bus + atomicity
– Writes serialized by order in which they appear on bus

(bus order)
– Per above assumptions, invalidations applied to

caches in bus order

! How to insert reads in this order?
– Important since processors see writes through reads,

so determines whether write serialization is satisfied
– But read hits may happen independently and do not

appear on bus or enter directly in bus order

Ordering Reads

! Read misses: appear on bus, and will see
last write in bus order

! Read hits: do not appear on bus
– But value read was placed in cache by either

! most recent write by this processor, or
! most recent read miss by this processor

– Both these transactions appear on the bus
– So reads hits also see values as being

produced in consistent bus order

Determining Orders More
Generally

!A memory operation M2 is subsequent to a memory operation M1 if the
operations are issued by the same processor and M2 follows M1 in
program order.

!Read is subsequent to write W if read generates bus xaction that follows
that for W.

!Write is subsequent to read or write M if M generates bus xaction and the
xaction for the write follows that for M.

!Write is subsequent to read if read does not generate a bus xaction and is
not already separated from the write by another bus xaction.

•Writes establish a partial order
•Doesn’t constrain ordering of reads, though bus will order
read misses to :
any order among reads between writes is OK, as long as in program order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

Problem with Write-Through

! High bandwidth requirements
– Every write from every processor goes to

shared bus and memory
– Consider 200MHz, 1CPI processor, and 15%

instrs. are 8-byte stores
– Each processor generates 30M stores or

240MB data per second
– 1GB/s bus can support only about 4

processors without saturating
– Write-through especially unpopular for SMPs

Problem with Write-Through

! Write-back caches absorb most writes as
cache hits
– Write hits don’t go on bus
– But now how do we ensure write propagation

and serialization?
– Need more sophisticated protocols: large

design space

! But first, let’s understand other ordering
issues

What is Memory Consistency ?
Writes to a location become visible to all in the same order
But when does a write become visible

How to establish orders between a write and a read by different
procs?
Typically use event synchronization, by using more than one
location

P1 P2
/*Assume initial value of A and ag is 0*/

A = 1; while (flag == 0); /*spin idly*/
flag = 1; print A;

Example– Memory Consistency

Effect of write buffers

// Dekker’s algorithm for critical sections
// Initially Flag1 = Flag2 = 0

P1

Flag1 = 1; W(Flag1)
If (Flag2 == 0) R(Flag2)
// critical section
...

P2

Flag2 = 1; W(Flag2)
if (Flag1 == 0) R(Flag1)
// critical section
...

Example :
Correct execution if a processor’s
Read operation returns 0 iff its
Write operation occurred before
both operations on the other
processor.

! Relaxed consistency : buffer write operations
– Breaks Sequential Consistency
– Invalidates Dekker’s algorithm
– Write operations delayed in buffer

Material from & further reading: Adve, S. V. and Gharachorloo, K. 1996. Shared Memory Consistency Models: A Tutorial. Computer 29, 12 (Dec. 1996),
66-76. DOI= http://dx.doi.org/10.1109/2.546611

PortabilityPerformanceProductivityExec Model

Memory Consistency

– Sometimes expect memory to respect order between
accesses to different locations issued by a given process
! to preserve orders among accesses to same location by different

processes
– Coherence doesn’t help: pertains only to single location
– Intuition not guaranteed by coherence

P1 P2
/*Assume initial value of A and ag is 0*/

A = 1; while (flag == 0); /*spin idly*/
flag = 1; print A;

Caches Complicate Things More
! Multiple copies of the same location

! P3 had A=B=0 in its cache, invalidations for B have
arrived before the invalidations for A. P3 reads 0

! Cache has a hiding effect

P1

A = 1;

P2

wait (A == 1);

B = 1;

P3

wait (B == 1);

.. = A;

Another Example of Orders

– What’s the intuition?
– Whatever it is, we need an ordering model for

clear semantics
! across different locations as well
! so programmers can reason about what results are

possible

– This is the memory consistency model

P1 P2

/*Assume initial values of A and B are 0*/
(1a) A = 1; (2a) print B;
(1b) B = 2; (2b) print A;

Memory Consistency Model
! Specifies constraints on the order in which memory operations (from any

process) can appear to execute with respect to one another
– What orders are preserved?
– Given a load, constrains the possible values returned by it

! Without it, can’t tell much about an Shared Address Space (SAS) program’s
execution

! Implications for both programmer and system designer
– Programmer uses to reason about correctness and possible results
– System designer can use to constrain how much accesses can be

reordered by compiler or hardware

! Contract between programmer and system

Sequential Consistency

– (as if there were no caches, and a single memory)
– Total order achieved by interleaving accesses from different processes
– Maintains program order, and memory operations, from all processes, appear

to [issue, execute, complete] atomically w.r.t. others
– Programmer’s intuition is maintained

! “A multiprocessor is sequentially consistent if the result of any
execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each
individual processor appear in this sequence in the order specified by
its program.” [Lamport, 1979]

Processors
issuing memory
references as
per program order

P1 P2 Pn

Memory

The “switch” is randomly
set after each memory
reference

What is Program Order?

! Intuitively, order in which operations appear in
source code
– Straightforward translation of source code to assembly
– At most one memory operation per instruction

! But not the same as order presented to hardware
by compiler

! So which is program order?
! Depends on which layer, and who’s doing the

reasoning
! We assume order as seen by programmer

! possible outcomes for (A,B): (0,0), (1,0), (1,2); impossible under SC:
(0,2)

! we know 1a->1b and 2a->2b by program order
! A = 0 implies 2b->1a, which implies 2a->1b
! B = 2 implies 1b->2a, which leads to a contradiction

! BUT, actual execution 1b->1a->2b->2a is SC, despite not program
order
" appears just like 1a->1b->2a->2b as visible from results

! actual execution 1b->2a->2b-> is not SC

What matters is order in which appears to execute, not executes

P1 P2

/*Assume initial values of A and B are 0*/
(1a) A = 1; (2a) print B;
(1b) B = 2; (2b) print A;

Another Example

! Initially: all vars are 0

! Possible (x,y) = (0,0),(0,1),(1,1)
! Impossible (x,y) = (1,0)

P1

A =1

Flag = 1

P2

x = Flag

y = A

Implementing SC

! Two kinds of requirements
– Program order

! memory operations issued by a process must
appear to become visible (to others and itself) in
program order

– Atomicity
! in the overall total order, one memory operation

should appear to complete with respect to all
processes before the next one is issued

! needed to guarantee that total order is consistent
across processes

! tricky part is making writes atomic

Write Atomicity

! Write Atomicity: Position in total order at which a
write appears to perform should be the same for all
processes
– Nothing a process does after it has seen the new value

produced by a write W should be visible to other
processes until they too have seen W

– In effect, extends write serialization to writes from multiple
processes

Write Atomicity

•Transitivity implies A should print as 1 under SC
•Problem if P2 leaves loop, writes B, and P3 sees new B but old
A (from its cache, say)

P1 P2 P3
A=1; while (A==0);

B=1; while (B==0);
print A;

More Formally
! Each process’s program order imposes partial order on set of

all operations
! Interleaving of these partial orders defines a total order on all

operations
! Many total orders may be SC (SC does not define particular

interleaving)

! SC Execution: An execution of a program is SC if the results it
produces are the same as those produced by some possible
total order (interleaving)

! SC System: A system is SC if any possible execution on that
system is an SC execution

Sequential Consistency (SC)

! Before a LOAD is allowed to perform wrt any processor,
all previous LOAD/STORE accesses must be performed
wrt everyone

! Before a STORE …. (same)

/* Note GLOBALLY performed */

Sequential Consistency (SC)

Program

Execution

LOAD

LOAD

LOAD

STORE

STORE

STORE

Sufficient Conditions for SC
! Every process issues memory operations in program order
! After a write operation is issued, the issuing process waits for the write to

complete before issuing its next operation
! After a read operation is issued, the issuing process waits for the read to

complete, and for the write whose value is being returned by the read to
complete, before issuing its next operation (provides write atomicity)

! Sufficient, not necessary, conditions
! Clearly, compilers should not reorder for SC, but they do!

– Loop transformations, register allocation (eliminates!)
! Even if issued in order, hardware may violate for better performance

– Write buffers, out of order execution
! Reason: uniprocessors care only about dependences to same location

– Makes the sufficient conditions very restrictive for performance

Processor Consistency

! Main idea: LOADs are allowed to bypass STORES

Program

Execution

LOAD

LOAD

LOAD

STORE

STOREThis LOAD

bypasses the

two STORES

… Honoring, of course,

local dependences

Processor Consistency

! Before a LOAD is allowed to perform wrt any processor,
all previous LOAD/STORE accesses must be performed
wrt everyone

! Before a STORE ….
…. LOAD/STORE ...

Order among the LD and the ST respectively

Weak Consistency

! Suppose we are in a critical section

! Then, we can have several accesses pipelined b/c
programmer has made sure that:
– no other process can rely on that data structure being consistent

until the critical section is exited

! Pros: Higher performance (more overlap)
! Cons: Need to distinguish between ordinary

LOAD/STORES and SYNCH

Weak Consistency

Program

Execution

LOAD/STORE

SYNCH

LOAD/STORE
….

LOAD/STORE

LOAD/STORE
….

LOAD/STORE

LOAD/STORE
….

SYNCH

2

1

Weak Consistency

! 1. Before an ordinary LOAD/STORE is allowed to
perform wrt any processor, all previous SYNCH
accesses must be performed wrt everyone

! 2. Before SYNCH access is allowed to perform wrt any
processor, all previous ordinary LOAD/STORE accesses
must be performed wrt everyone

! SYNCH accesses are sequentially consistent wrt one
another

Release Consistency

Program

Execution

SYNCH

LOAD/STORE

LOAD/STORE
….

LOAD/STORE

LOAD/STORE
….

LOAD/STORE

LOAD/STORE
….SYNCH

2

1

3

4

Release Consistency

! Distinguish between:
– SYNCH acquires: e.g. LOCK
– SYNCH releases: e.g. UNLOCK

! LOAD/STORE following a RELEASE do not have to be
delayed for the RELEASE to complete

! An ACQUIRE needs not to be delayed for previous
LOAD/STORES to complete

! Accesses in the critical section do not wait or delay
LOAD/STORES outside the critical section

Release Consistency

Program

Execution

AQUIRE

LOAD/STORE

LOAD/STORE
….

LOAD/STORE

LOAD/STORE
….

LOAD/STORE

LOAD/STORE
….RELEASE

2

1

3

4

Release Consistency

! 3. Before an ordinary LOAD/STORE is allowed to
perform wrt any processor, all previous SYNCH
ACQUIRE accesses must be performed wrt everyone

! 4. Before SYNCH RELEASE access is allowed to
perform wrt any processor, all previous ordinary
LOAD/STORE accesses must be performed wrt
everyone

! ACQ/REL accesses are processor consistent wrt one
another

Release Consistency

! Advantages: Higher performance – more parallelism
! Disadvantages: Need to additionally distinguish between

ACQUIRE/RELEASE

How to enforce these stalls?

! With Fence instructions
! Different types of fences present in current processors
! Check manuals of processors to see which types of

fences are supported

Performance Gains in SW

! Common compiler optimizations require:
– Change the order of memory operations
– Eliminate memory operations

! More advanced optimizations such as loop transformation and blocking
! Relaxed models allow compilers to do more re-arrangements

! Examples:
– Register allocating a flag that is used to synchronize

While (flag==0);

– Code motion or register allocation across synchronization
Lock L
Read A
Write B
Unlock L
Lock L
Read A
Read B
Unlock L

! Sequential consistency disallows reordering of shared accesses

Sequential Consistency: Don’t assume it !

! Sequential Consistency (SC)
– MIPS/SGI
– HP PA-RISC

! Processor Consistency (PC)
– Relax writeàread dependencies
– Intel x86 (IA-32)
– Sun TSO (Total Store Order)

! Relaxed Consistency (RC)
– Relax all dependencies, but add fences
– DEC Alpha
– IBM PowerPC
– Intel IPF (IA-64)
– Sun RMO (Relaxed Memory Order)

Material from: Hill, M. D. 2003. Revisiting "Multiprocessors Should Support Simple Memory Consistency Models" ,
http://www.cs.wisc.edu/multifacet/papers/dagstuhl03_memory_consistency.ppt

SC

PC

Relaxed Models

Weakly Ordered
Models

Enforce Data
Dependences

Do NOT
Enforce Data
Dependences

IA-32
SPARC TSO

IA-64
SPARC RMO Alpha

PortabilityPerformanceProductivityExec Model

Further Readings & Acknowledgent

! Shared Memory Consistency Models: A Tutorial, S.V. Adve and K.
Gharachorloo, IEEE Computer, December 1996, 66-76.

! An Evaluation of Memory Consistency Models for Shared-Memory
Systems with ILP Processors, Vijay S. Pai, Parthasarathy
Ranganathan, Sarita V. Adve, and Tracy Harton, Proceedings of the

7th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-VII),

October 1996, 12-23.

! Culler and Singh course textbook
! Processors have their own memory consisteny models: e.g. SUN’s

PSO, TSO

! Some slides adapted from Prof. Josep Torrellas’ (UIUC) course.

http://rsim.cs.uiuc.edu/~sadve/Publications/models_tutorial.ps
http://rsim.cs.uiuc.edu/~sadve/Publications/asplos96.ps

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models

– Parallel Execution Model
! Models for Communication
! Models for Synchronization
! Memory Consistency Models
! Runtime systems

– Productivity
– Performance
– Portability

! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models
! PGAS Languages
! Other Programming Models

Productivity
! Reduce time to solution

– Programming time + execution time

! Reduce cost of solution
! Function of:

– problem solved P
– system used S
– Utility function U

(, ,)P S UY =Y

PortabilityPerformanceProductivityExec Model

Utility Functions
! Decreasing in time.

! Extreme example:
deadline driven

! Practical
approximation:
staircase

Time

Ut
ilit

y

Time

Ut
ilit

y
Time

Ut
ilit

y

20 mins

overnight

PortabilityPerformanceProductivityExec Model

Simple Example
! Assume deadline-driven

Utility and decreasing
Cost

! Max productivity
achieved by solving
problem just fast enough
to match deadline

! Need to account for
uncertainty

Cost

Pr
od

uc
tiv

ity
=U

/C

PortabilityPerformanceProductivityExec Model

Programming Model Impact
! Features try to reduce development time

– Expressiveness
– Level of abstraction
– Component Reuse
– Expandability
– Base language
– Debugging capability
– Tuning capability
– Machine model
– Interoperability with other languages

! Impact on performance examined separately

PortabilityPerformanceProductivityExec Model

Expressive

Definition from http://lml.ls.fi.upm.es/~jjmoreno/expre.html

Programming model’s ability to express solution in:
! The closest way to the original problem formulation
! A clear, natural, intuitive, and concise way
! In terms of other solved (sub)problems

PortabilityPerformanceProductivityExec Model

Level of Abstraction

! Amount of complexity exposed to developer

MATLAB

STAPL

C

% a and b are matrices
c = a * b;

// a and b are matrices
Matrix<double> c = a * b;

/* a and b are matrices */
double c[10][10];
int i, j, k;
for(int i=0; i<10; ++i) {

for(int k=0; k<10; ++k) {
for(int j=0; j<10; ++j) {

c[i][j] += a[i][k]*b[k][j];
}

}
}

Le
ve

l o
f A

bs
tra

ct
io

n
PortabilityPerformanceProductivityExec Model

Component Reuse

! Goal: Increase reuse to reduce development time
! Programming model provides component libraries

p_vector<double> x(100);
p_vector<double> y(100);

p_generate(x, rand);
p_generate(y, rand);

double result = p_inner_product(x,y);

STAPL pContainers and pAlgorithms

PortabilityPerformanceProductivityExec Model

Expandable

! Programming model provides a subset of
components needed for a parallel application.

! Expansion enabled by:
– Transparent components
– Compositional construction

PortabilityPerformanceProductivityExec Model

Component Transparency

! Opaque objects hide implementation details
– raises level of abstraction
– makes expansion difficult

! Transparent components
– allow internal component reuse
– example of working in programming model

int main() {
pthread_t thread;
pthread_attr_t attr;
// …

}

template<class T>
class p_array : public p_container_indexed<T> {
typedef p_container_indexed<T> base_type;

size_t m_size;
//…

};

PortabilityPerformanceProductivityExec Model

Component Composition
Build a new component using building blocks.

template<typename View>
bool p_next_permutation(View& vw) {

…
reverse_view<View> rvw(vw);
iter1 = p_adjacent_find(rvw);
…
iter2 = p_find_if(rvw, std::bind1st(pred, *iter1));
…
p_reverse(rvw);
return true;

}

PortabilityPerformanceProductivityExec Model

Issue: performance of composed blocks….

Programming Language
! Programming model language options:

– provide a new language
– extend an existing language
– provide directives for an existing language
– use an existing language

component HelloWorld
export Executable

run()=do
print "Hello, world!\n“

end
end

Fortress
cilk void hello() {
printf(“Hello, world!\n”);

}

int main() {
spawn hello();
sync;

}

Cilk

PortabilityPerformanceProductivityExec Model

Providing a new language

! Advantage
– Complete control of level of abstraction
– Parallel constructs embedded in language

! Disadvantage
– Compiler required for every target platform
– Developers must learn language

component HelloWorld
export Executable

run()=do
print "Hello, world!\n“

end
end

Fortress

PortabilityPerformanceProductivityExec Model

Extending a language
! Advantage

– Developers have less to learn
– Complete control of level of abstraction
– Parallel constructs embedded in syntax

! Disadvantage
– Compiler required for every target system
– Limited by constraints of base language

cilk void hello() {
printf(“Hello, world!\n”);

}
int main() {
spawn hello();
sync;

}

PortabilityPerformanceProductivityExec Model

Directives for a language
! Advantage

– Developers have less to learn
– Parallel constructs easily expressed in directives
– Use available compilers if needed (no parallelization)
– Specialized not necessarily needed on system

! Disadvantage
– Compiler required for every target system
– Higher levels of abstraction can’t be achieved
– Limited by constraints of base language
– No composition

#pragma omp parallel for
for(int i=0; i<N; ++i) {
C[i] = A[i]*B[i];

}

PortabilityPerformanceProductivityExec Model

Library for a language
! Advantage

– Developers learn only new API
– Compilers available on more systems

! Disadvantage
– Limited by constraints of base language

int main() {
pthread_t thread;
pthread_attr_t attr;
pthread_attr_init(&attr);

pthread_create(&thread, &attr,
hello, NULL);

}

void* hello(void*) {
printf(“Hello, world!\n”);
pthread_exit(NULL);

}

PortabilityPerformanceProductivityExec Model

Debuggable

Built-in provides proprietary tools that utilize
extra runtime information

Charm++

Tracing provides hooks for tools to log state
during execution

MPI, Charm++

Interoperability
with standard
tools

Leverage standard tools available on
platform (e.g., gdb, totalview)

STAPL, TBB,
Pthreads, MPI,
OpenMP

Programming environments provide many options for
debugging parallel applications.

PortabilityPerformanceProductivityExec Model

Defect Management
! Reduce Defect Potential

– Programming style reduces likelihood of errors
– Use of container methods reduces out-of-bounds accesses

! Provide Defect Detection
– Components support options to detect errors at runtime
– E.g., PTHREAD_MUTEX_ERRORCHECK enables detection of

double-locking and unnecessary unlocking

class tbb_work_function {
void operator()(const blocked_range<size_t>& r) {
for(size_t i = r.begin(); i != r.end(); ++i)
C[i] = A[i]*B[i];

}
};

PortabilityPerformanceProductivityExec Model

Tunability
Programming environments support application optimization

on a platform using:

! Performance Monitoring
– Support measuring application metrics

! Implementation Refinement
– Support for adaptive/automatic modification of application
– Manual mechanisms provided to allow developer to implement

refinement

PortabilityPerformanceProductivityExec Model

Performance Monitoring
! Built-in support

– Environment’s components instrumented
– Output of monitors enabled/disabled by developer
– Components written by developer can use same instrumentation

interfaces

! Interoperable with performance monitoring tools
– Performance tools on a platform instrument binaries

PortabilityPerformanceProductivityExec Model

Implementation Refinement
! Adjust implementation to improve performance

– distribution of data in a container
– scheduling of iterations to processors

! Adaptive/Automatic
– Monitors performance and improves performance without developer

intervention
– Example: Algorithm selection in STAPL

! Manual mechanisms
– Model provides methods to allow developer adjustment to improve

performance
– Example: Grain size specification to TBB algorithms

PortabilityPerformanceProductivityExec Model

Machine Model
! Programming models differ in the amount and type of

machine information available to user
– TBB, Cilk, OpenMP: user unaware of number of threads
– MPI: user required to write code as a function of the machine in

order to manage data mapping

! Programming as a function of the machine
– Lowers level of abstraction
– Increases programming complexity

PortabilityPerformanceProductivityExec Model

Interoperability with other models
! Projects would like to use multiple models

– Use best fit for each application module
– Modules need data from one another

! Models need flexible data placement requirements
– Avoid copying data between modules
– Copying is correct, but expensive

! Models need generic interfaces
– Components can interact if interfaces meet requirements
– Avoids inheriting complex hierarchy when designing new

components

PortabilityPerformanceProductivityExec Model

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models

– Parallel Execution Model
! Models for Communication
! Models for Synchronization
! Memory Consistency Models
! Runtime systems

– Productivity
– Performance
– Portability

! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models
! PGAS Languages
! Other Programming Models

Performance

! Latency Management

! Load Balancing

! Creating a High Degree of Parallelism

PortabilityPerformanceProductivityExec Model

Performance - Memory Wall
Complex memory hierarchies greatly affect parallel execution.
Processing elements may share some components
(e.g., L1/L2 caches, RAM), but usually not all.

Parallelism exacerbates the effects of memory latency.
• Contention from centralized components.
• Non uniform latency caused by distributed components.

Desktop Core2Duo
Private L1 Cache
Shared L2 Cache

Shared Centralized UMA SGI Origin
Private L1 Cache
Private L2 Cache

Shared, Distributed NUMA
Linux Cluster

Private L1 Cache
Private L2 Cache

Private, Distributed NUMA

PortabilityPerformanceProductivityExec Model

Performance - Memory Contention
The extent to which processes access the same location
at the same time.

! Types of contention and mitigation approaches.
– False sharing of cache lines.

! Memory padding to cache block size.
– ‘Hot’ memory banks.

! Better interleaving of data structures on banks.
– True Sharing.

! Replication of data structure.
! Locked refinement (i.e., distribution) for aggregate types.

! Most models do not directly address contention.

PortabilityPerformanceProductivityExec Model

Hiding Latency - Runtime System

Runtime system uses extra parallelism made

available to transparently hide latency.

e.g., Multithreading (STAPL / ARMI)

Communication library overlaps computation with
communication (of work)

PortabilityPerformanceProductivityExec Model

Performance - Managing Latency

There are two approaches to managing latency.

! Hiding - tolerate latency by overlapping a memory
accesses with other computation.
– User Level
– Runtime System

! Reducing - minimize latency by having data near
the computation that uses it.

PortabilityPerformanceProductivityExec Model

Hiding Latency - User Level
Model has programming constructs that allow user to make
asynchronous remote requests.
! Split-Phase Execution (Charm++)

Remote requests contain address of return handler.

class A { class B {
foo() { xyz(Return ret) {

B b; …
b.xyz(&A::bar()); ret(3);

} }
bar(int x) { … } };

};

! Futures
Remote requests create a handle that is later queried.

future<double> v(foo()); //thread spawned to execute foo()
… //do other unrelated work
double result = v.wait(); //get result of foo()

PortabilityPerformanceProductivityExec Model

Performance - Latency Reduction
Data placement (HPF, STAPL, Chapel)
Use knowledge of algorithm access pattern to place all data
for a computation near executing processor.
INTEGER, DIMENSION(1:16):: A,B
!HPF$ DISTRIBUTE(BLOCK) :: A
!HPF$ ALIGN WITH A :: B

Work placement (STAPL, Charm++)
Migrate computation to processor near data and return final
result. Natural in RMI based communication models.

PortabilityPerformanceProductivityExec Model

Load Balancing

Keep all CPUs doing equal work.
Relies on good work scheduling.

! Static (MPI)
Decide before execution how to distribute work.

! Dynamic (Cilk, TBB)
Adjust work distribution during execution.

– Requires finer work granularity (> 1 task per CPU)
Some models change granularity as needed (minimize overhead).

– Work Stealing
Allow idle processors to ‘steal’ queued work from busier

processors.

PortabilityPerformanceProductivityExec Model

Enabling a High Degree of Parallelism

Parallel models must strive for a high degree of
parallelism for maximum performance.

Makes transparent latency hiding easy.

Enables finer granularity needed for load balancing.

PortabilityPerformanceProductivityExec Model

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models

– Parallel Execution Model
! Models for Communication
! Models for Synchronization
! Memory Consistency Models
! Runtime systems

– Productivity
– Performance
– Portability

! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models
! PGAS Languages
! Other Programming Models

Portability

! Language versus Library
! Runtime System

– Interchangeable
– Virtualization
– Load balancing
– Reliance on specific machine features

! Effects of exposed machine model on portability
! I/O Support

PortabilityPerformanceProductivityExec Model

Language versus Library
! Models with specialized language require a compiler to be

ported and sometimes additional runtime support.

– Cray’s Chapel, Titanium, Sun’s Fortress.

! Library approaches leverage standard toolchains, and
often rely on widely available standardized components.

– STAPL requires C++, Boost, and a communication subsystem
(MPI, OpenMP Pthreads).

– MPI requires communication layer interfaceand command wrappers
(mpirun) to use portable versions (MPICH or LamMPI).
Incremental customization can improve performance.

PortabilityPerformanceProductivityExec Model

Runtime System
! Interchangeable

Runtime system (e.g., threading and communication
management) specific to model or is it modular?

! Processor Virtualization
How are logical processes mapped to processors?
Is it a 1:1 mapping or multiple processes per processor?

Language / Library

Runtime / Communication Layer

Operating SystemThese Lines Often Get Blurred…

PortabilityPerformanceProductivityExec Model

Runtime System
! Load Balancing

Support for managing processor work imbalance?
How is it implemented?

! Reliance on Machine Features
Runtime system require specific hardware support?
Can it optionally leverage hardware features?

Language / Library

Runtime / Communication Layer

Operating SystemThese Lines Often Get Blurred…

PortabilityPerformanceProductivityExec Model

Effects of Parallel Model
What effect does the model’s level of abstraction
have in mapping/porting to a new machine?

– Does it hide the hardware’s model (e.g., memory
consistency) or inherit some characteristics?
Portability implications?

– Is there interface of machine characteristics for
programmers? Optional use (i.e., performance tuning) or
fundamental to code development?

– Ideally – Optional user level architectural model

PortabilityPerformanceProductivityExec Model

Support for I/O

Some parallel models specifically address
I/O, providing mechanisms that provide an
abstract view to various disk subsystems.

ROMIO - portable I/O extension included with MPI
(Message Passing Interface).

PortabilityPerformanceProductivityExec Model

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models
! Shared Memory Programming

– OpenMP
– pThreads

! Message Passing Programming
! Shared Memory Models
! PGAS Languages
! Other Programming Models

Shared Memory Programming

! Smaller scale parallelism (100’s of CPUs)

! Single system image

! Thread-based

! Threads have access to entire shared memory
– Threads may also have private memory

Shared Memory Programming

! No explicit communication
– Threads write/read shared data
– Mutual exclusion used to ensure data

consistency

! Explicit Synchronization
– Ensure correct access order
– E.g., don’t read data until it has been written

Example - Matrix Multiply
for(int i=0; i<M; ++i) {
for(int j=0; j<N; ++j) {
for(int k=0; k<L; ++k) {
C[i][j] +=

A[i][k]*B[k][j];
}

}
}

One way to parallelize is to
compute each row
Independently.

Table of Contents

! Introduction to Parallelism
! Introduction to Programming Models
! Shared Memory Programming

– OpenMP
– pThreads

! Message Passing Programming
! Shared Memory Models
! PGAS Languages
! Other Programming Models

! Allows explicit parallelization of loops
– Directives for Fortran and C/C++
– Limited support for task parallelism

! Vendor standard
– ANSI X3H5 standard in 1994 not adopted
– OpenMP standard effort started in 1997
– KAI first to implement new standard

OpenMP

Materials from http://www.llnl.gov/computing/tutorials/openMP/

#pragma omp parallel for
for(int i=0; i<N; ++i) {
C[i] = A[i] + B[i];

}

The OpenMP Model
Execution Model

– Explicitly parallel

– Single-threaded view

– SPMD

– Implicit data distribution

– Nested parallelism support

– Relaxed consistency within parallel sections

The OpenMP Model
Productivity

– Provides directives for existing languages
– Low level of abstraction
– User level tunability
– Composability supported with nesting of critical sections

and parallel loops

Performance
– Load balancing

! optional selection of runtime scheduling policy
– Scalable parallelism

! Parallelism proportional to data size

The OpenMP Model
Portability

– Directives allow use of available compilers
! Application compiles and runs, but no parallelization

– Supports processor virtualization
! N:1 mapping of logical processes to processors

– Load balancing
! optional selection of runtime scheduling policy

– No reliance on system features
! can utilize specialized hardware to implement Atomic update

OpenMP Thread Management
! Fork-Join execution model

! User or developer can specify thread count
– Developer’s specification has priority
– Variable for each parallel region
– Runtime system has default value

! Runtime system manages threads
– User/developer specify thread count only
– Threads “go away” at end of parallel region

Master Thread

PR1: 5 threads

PR1: 6 threads

PR1: 4 threads

OpenMP Thread Management

! Determining number of threads
– omp_set_num_threads(int) function
– OMP_NUM_THREADS environment variable
– Runtime library default

! Threads created only for parallel sections

Creating Parallel Sections

! Parallel for

! Options
– Scheduling Policy
– Data Scope Attributes

! Parallel region

! Options
– Data Scope Attributes

#pragma omp parallel for
shared(a,b,c,chunk)
private(i)
schedule(static,chunk)

for (i=0; i < n; i++)
c[i] = a[i] + b[i];

#pragma omp parallel
{
// Code to execute

}

Data Scope Attributes
Private variables are private to each thread

First Private variables are private and initialized with value
of original object before parallel region

Last Private variables are private and value from last loop
iteration or section is copied to original object

Shared variables shared by all threads in team

Default specifies default scope for all variables in
parallel region

Reduction reduction performed on variable at end of
parallel region

Copy in assigns same value to variables declared as
thread private

OpenMP Synchronization

! Mutual exclusion by critical sections

! Atomic update

#pragma omp parallel
{
// …
#pragma omp critical
sum += local_sum

}

#pragma omp parallel
{
// …
#pragma omp atomic
sum += local_sum

}

• Named critical sections
•unnamed sections treated as one

•Critical section is scoped

•Specialized critical section

•May enable fast HW implementation

•Applies to following statement

OpenMP Synchronization

! Barrier directive
– Thread waits until all others reach this point
– Implicit barrier at end of each parallel region

#pragma omp parallel
{
// …
#pragma omp barrier
// …

}

OpenMP Scheduling
! Load balancing handled by runtime scheduler
! Scheduling policy can be set for each parallel loop

Static Create blocks of size chunk and assign to threads before loop
begins execution. Default chunk creates equally-sized blocks.

Dynamic Create blocks of size chunk and assign to threads during loop
execution. Threads request a new block when finished
processing a block. Default chunk is 1.

Guided Block size is proportional to number of unassigned iterations
divided by number of threads. Minimum block size can be set.

Runtime No block size specified. Runtime system determines iteration
assignment during loop execution.

Scheduling Policies

OpenMP Matrix Multiply
#pragma omp parallel for
for(int i=0; i<M; ++i) {
for(int j=0; j<N; ++j) {
for(int k=0; k<L; ++k) {
C[i][j] +=

A[i][k]*B[k][j];
}

}
}

OpenMP Matrix Multiply

#pragma omp parallel for
for(int i=0; i<M; ++i) {
#pragma omp parallel for
for(int j=0; j<N; ++j) {

for(int k=0; k<L; ++k) {
C[i][j] +=

A[i][k]*B[k][j];
}

}
}

! Parallelizing two loops
– Uses nested parallelism support
– Each element of result matrix computed independently

OpenMP Matrix Multiply

for(int i=0; i<M; ++i) {
for(int j=0; j<N; ++j) {
#pragma omp parallel for
for(int k=0; k<L; ++k) {
#pragma omp critical
C[i][j] +=

A[i][k]*B[k][j];
}

}
}

! Parallelizing inner loop
– Inner loop parallelized instead of outer loop

! Minimizes work in each parallel loop – for illustration purposes only
– Multiple threads contribute to each element in result matrix
– Critical section ensures only one thread updates at a time

OpenMP Matrix Multiply

#pragma omp parallel for \
schedule(dynamic)
for(int i=0; i<M; ++i) {
for(int j=0; j<N; ++j) {
for(int k=0; k<L; ++k) {
C[i][j] +=

A[i][k]*B[k][j];
}

}
}

! Use dynamic scheduling of iterations

Table of Contents

! Introduction to Parallelism
! Introduction to Programming Models
! Shared Memory Programming

– OpenMP
– pThreads

! Message Passing Programming
! Shared Memory Models
! PGAS Languages
! Other Programming Models

Pthreads

! Specification part of larger IEEE POSIX standard
– POSIX is the Portable Operating System Interface
– Standard C API for threading libraries

! IBM provides Fortran API
– Introduced in 1995

! Explicit threading of application
– User calls functions to create/destroy threads

Materials from http://www.llnl.gov/computing/tutorials/pthreads/

The Pthreads Model

! Execution Model
– Explicit parallelism
– Explicit synchronization

! Productivity
– Not a primary objective
– Library for existing language
– Low level of abstraction
– Uses opaque objects – prevents expansion

The Pthreads Model

! Performance
– No attempts to manage latency
– Load balancing left to OS
– Developer responsible for creating high degree of

parallelism by spawning threads

! Portability
– Library widely available

Pthreads Thread Management
! User creates/terminates threads

! Thread creation
– pthread_create
– Accepts a single argument (void *)

! Thread termination
– pthread_exit
– Called from within terminating thread

Pthreads Synchronization
Mutual Exclusion Variables (mutexes)

pthread_mutex_t mutexsum;
void *dot_product(void *arg) {
…
pthread_mutex_lock (&mutexsum);
sum += mysum;
pthread_mutex_unlock (&mutexsum);
…

}
int main() {
pthread_mutex_init(&mutexsum, NULL);
…
pthread_mutex_destroy(&mutexsum);

}

•Mutexes must be initialized before use
•Attribute object can be initialized to enable error checking

Pthreads Synchronization
Condition Variables
! Allows threads to synchronize based on value of

data

! Threads avoid continuous polling to check
condition

! Always used in conjunction with a mutex
– Waiting thread(s) obtain mutex then wait

! pthread_cond_wait() function unlocks mutex
! mutex locked for thread when it is awakened by signal

– Signaling thread obtains lock then issues signal
! pthread_cond_signal() releases mutex

Condition Variable Example

pthread_mutex_t mtx;
pthread_cond_t cv;

int main() {
…
pthread_mutex_init(&mtx, NULL);
pthread_cond_init (&cv, NULL);
…
pthread_create(&threads[0], &attr,

inc_count, (void *)&thread_ids[0]);
pthread_create(&threads[1], &attr,

inc_count, (void *)&thread_ids[1]);
pthread_create(&threads[2], &attr,

watch_count, (void *)&thread_ids[2]);
…
}

Two threads update a counter
Third thread waits until counter reaches a threshold

Condition Variable Example

void *inc_count(void *idp) {
…
for (i=0; i<TCOUNT; ++i) {
pthread_mutex_lock(&mtx);
++count;
if (count == LIMIT)
pthread_cond_signal(&cv);

pthread_mutex_unlock(&mtx);
…

}
…
}

void *watch_count(void *idp) {
…
pthread_mutex_lock(&mtx);
while (count < COUNT_LIMIT) {
pthread_cond_wait(&cv, &mtx);

}
pthread_mutex_unlock(&mtx);
…
}

pthread_cond_broadcast() used if multiple threads waiting on signal

Incrementing Threads Waiting Thread

Pthreads Matrix Multiply
int tids[M];
pthread_t threads[M];
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(
&attr,
PTHREAD_CREATE_JOINABLE);

for (i=0; i<M; ++i) {
tids[i] = i;
pthread_create(&threads[i],
&attr, work, (void *) &tids[i]);

}

for (i=0; i<M; ++i) {
pthread_join(threads[i], NULL);

}

void* work(void* tid) {
for(int j=0; j<N; ++j) {
for(int k=0; k<L; ++k) {
C[tid][j] +=
A[tid][k]*B[k][j];

}
}
pthread_exit(NULL);

}

References
OpenMP

http://www.openmp.org
http://www.llnl.gov/computing/tutorials/openMP

Pthreads
http://www.llnl.gov/computing/tutorials/pthreads
"Pthreads Programming". B. Nichols et al. O'Reilly

and Associates.
"Programming With POSIX Threads". D. Butenhof.

Addison Wesley

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models
! Shared Memory Programming
! Message Passing Programming

– MPI
– Charm++

! Shared Memory Models
! PGAS Languages
! Other Programming Models

Message Passing Model
! Large scale parallelism (up to 100k+ CPUs)

! Multiple (possibly heterogeneous) system images

! Distributed memory
– Nodes can only access local data
– Application (User) responsible for:

! Distributing data
! Redistributing data (when necessary)
! Maintaining memory coherent

Message Passing Model
! Explicit communication

– Two-sided P2P:
! Communication initiated on one side requires matching action on the

remote side
! E.g. MPI_Send – MPI_Recv

– One-sided P2P:
! Communication is initiated on one side and no action is required on the

other
! E.g. MPI_Get/Put, gasnet_get/put ...

! Implicit synchronization with two-sided communication
– The matching of communication operations from both sides ensures

synchronization

Message Passing Model
! Objectives of the model

– Enabling parallelization on highly scalable hardware
– Support for heterogeneous systems
– Often coarse-grained parallelism

! Main issues
– Communication
– Synchronization
– Load balancing

Projects of Interest
! Message Passing Interface (MPI)

– De facto standard for this model
– Deemed low level and difficult to program
– Two-sided and one-sided communication

! Charm++
– Asynchronous Remote Method Invocation (RMI) communication
– Split-phase programming model

! No synchronous communication
! Caller provides a callback handler to asynchronously process “return” value

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models
! Shared Memory Programming
! Message Passing Programming

– MPI
– Charm++

! Shared Memory Models
! PGAS Languages
! Other Programming Models

Message Passing Interface (MPI)
! 1980s – early 1990s

– Distributed memory, parallel
computing develops

– Many incompatible software tools
– Usually tradeoffs between

portability, performance, functionality
and price

! Recognition of the need for a
standard arose.

Material from: http://www.llnl.gov/computing/tutorials/mpi/

Message Passing Interface (MPI)
! Standard based on the consensus of the MPI Forum

– Not sanctioned by any major standards body
– Wide practical acceptance
– No effective alternative to date

! First draft of the MPI-1 standard presented at Supercomputing 1993

! Current standard MPI-2 developed between 1995 and 1997

! Standardization committee open to all members of the HPC community

Further reading and standard documents: http://www.mpi-forum.org/

Message Passing Interface (MPI)
! Objectives

– High performance and scalability
– Portability
– Productivity is not an objective (actually it was)

! Used as communication layer for higher-level libraries
– Often for more productivity-oriented libraries
– ISO/OSI layer-5 interface

! Communication is reliable and sessions are managed internally
! Data is not structured

MPI: Specification, not Implementation

! Language Independent Specification (LIS)
! Library implementations of MPI vary in:

– Performance
! Target or rely on specific hardware (RDMA, PIM, Coprocessors …)
! Provide load-balancing and processor virtualization (e.g., AMPI)

– Functionality
! Support for parallel I/O
! Support for multithreading within MPI processes

! Standard provides language bindings for Fortran, C and C++
! Implementations usually provide APIs for C, C++ and Fortran
! Project implementations for Python, OCaml, and Java

MPI – Programming Model
Execution Model

– Explicitly parallel
! Programmer responsible for correctly identifying parallelism and for

implementing parallel algorithms using MPI constructs
! Multi-threaded view

– SPMD

– Explicit data distribution

– Flat parallelism
! Number of tasks dedicated to run a parallel program is static

– Processor Consistency (one-sided communication)

MPI – Programming Model
Productivity

– Not a principal objective
! Low level of abstraction
! Communication is not structured (marshalling done by the user)

Performance
– Vendor implementations exploit native hardware features

to optimize performance

Portability
– Most vendors provide an implementation

! E.g., Specialized open source versions of MPICH, LAM or OpenMPI

– Standard ensures compatibility

MPI – Program Structure
General program structure Communicators and groups

• Collection of processes that may communicate
• Unique rank (processor ID) within communicator
• Default communicator: MPI_COMM_WORLD

Materials from: http://www.llnl.gov/computing/tutorials/mpi/

MPI – Point to Point Communication

Types of Point-to-Point Operations:

! Message passing between two, and only two, different MPI tasks
– One task performs a send operation
– The other task matches with a receive operation

! Different types of send/receive routines used for different purposes
– Synchronous send
– Blocking send / blocking receive
– Non-blocking send / non-blocking receive
– Buffered send
– Combined send/receive
– "Ready" send

! Any type of send can be paired with any type of receive

! Test and Probe routines to check the status of pending operations

Material from: http://www.llnl.gov/computing/tutorials/mpi/

MPI – Point to Point Communication

Blocking vs. Non-blocking

! Most routines can be used in either blocking or non-blocking mode

! Blocking communication routines
– Blocking send routines only return when it is safe to reuse send buffer

! Modifications to send buffer will not affect data received on the remote side
" Data already sent
" Data buffered in a system buffer

– Blocking send calls can be synchronous
! Handshaking with the receiver

– Blocking send calls can be asynchronous
! System buffer used to hold the data for eventual delivery to the receiver

– Blocking receive calls only return after the data has arrived and is ready for use by
the program

Materials from: http://www.llnl.gov/computing/tutorials/mpi/

MPI – Point to Point Communication

Blocking communication example

Materials from: http://www.llnl.gov/computing/tutorials/mpi/

#include "mpi.h"
#include <stdio.h>

int main(int argc,char *argv[]) {
int numtasks, rank, dest, source, rc, count, tag=1;
char inmsg, outmsg='x';
MPI_Status Stat;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {
dest = 1;
source = 1;
rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

}
else if (rank == 1) {

dest = 0;
source = 0;
rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

}

rc = MPI_Get_count(&Stat, MPI_CHAR, &count);
printf("Task %d: Received %d char(s) from task %d with tag %d \n",

rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG);

MPI_Finalize();
}

MPI – Point to Point Communication

Blocking vs. Non-blocking

! Non-blocking communication routines
– Send and receive routines behave similarly

! Return almost immediately

! Do not wait for any communication events to complete
" Message copying from user memory to system buffer space
" Actual arrival of message

– Operations "request" the MPI library to perform an operation
! Operation is performed when its requirements are met (e.g., message arrives)

! User cannot predict when that will happen

– Unsafe to modify the application buffer until completion of operation
! Wait and Test routines used to determine completion

! Non-blocking communications primarily used to overlap computation with
communication and exploit possible performance gains

Material from: http://www.llnl.gov/computing/tutorials/mpi/

MPI – Point to Point Communication

Non-blocking communication example

Materials from: http://www.llnl.gov/computing/tutorials/mpi/

MPI_Request reqs[4];
MPI_Status stats[4];

prev = rank-1;
next = rank+1;
if (rank == 0) prev = numtasks - 1;
if (rank == (numtasks - 1)) next = 0;

MPI_Irecv(&buf[0], 1, MPI_INT, prev, tag1, MPI_COMM_WORLD, &reqs[0]);
MPI_Irecv(&buf[1], 1, MPI_INT, next, tag2, MPI_COMM_WORLD, &reqs[1]);

MPI_Isend(&rank, 1, MPI_INT, prev, tag2, MPI_COMM_WORLD, &reqs[2]);
MPI_Isend(&rank, 1, MPI_INT, next, tag1, MPI_COMM_WORLD, &reqs[3]);

{
// do some work
// work will overlap with previous communication

}

MPI_Waitall(4, reqs, stats);

MPI – Point to Point Communication

Order and Fairness
! Message Ordering

– Messages do not overtake each other
! If a sender sends two messages (Message 1 and Message 2) in succession to

the same destination, and both match the same receive, the receive operation
will receive Message 1 before Message 2.

! If a receiver posts two receives (Receive 1 and Receive 2), in succession, and
both match the same message, Receive 1 will receive the message before
Receive 2.

– Ordering is not thread-safe
! If multiple threads participate in the communication, no order is guaranteed

! Fairness of Message Delivery
– No fairness guarantee

! Programmer responsible for preventing operation starvation
– Example: task 0 sends a message to task 2. However, task 1 sends a

competing message that matches task 2's receive. Only one of the sends
will complete.

Material from: http://www.llnl.gov/computing/tutorials/mpi/

MPI – Point to Point Communication

Buffering when tasks are out of sync

! If a receive operation is not ready, sent data is buffered
– On receiving side, sending side or both

! User can manage buffering memory on sending side

Material from: http://www.llnl.gov/computing/tutorials/mpi/

MPI – Collective Communication

! All or None
– Must involve all processes in the scope of the used communicator
– User responsible to ensure all processes within a communicator

participate in any collective operation

! Types of Collective Operations
– Synchronization (barrier)

! Processes wait until all members of the group reach the synchronization point

– Data Movement
! Broadcast, scatter/gather, all to all

– Collective Computation (reductions)
! One member of the group collects data from the other members and performs

an operation (e.g., min, max, add, multiply, etc.) on that data

Material from: http://www.llnl.gov/computing/tutorials/mpi/

MPI – Collective Communication

Programming Considerations and Restrictions

! Collective operations are blocking

! Collective communication routines do not take message
tag arguments

! Collective operations within subsets of processes
– Partition the subsets into new groups
– Attach the new groups to new communicators

! Can only be used with MPI predefined data types
– Not with MPI Derived Data Types

Material from: http://www.llnl.gov/computing/tutorials/mpi/

MPI – Matrix Multiply (master task)

#define NRA 15 // Number of rows in matrix A
#define NCA 25 // Number of columns in A
#define NCB 10 // Number of columns in B
#define TAG 0 // MPI communication tag
// Data structures
double A[NRA][NCA];// matrix A to be multiplied
double B[NCA][NCB];// matrix B to be multiplied
double C[NRA][NCB];// result matrix C

avgNumRows = NRA/numWorkers;
remainingRows = NRA%numWorkers;
offset = 0;
for (dest = 1; dest <= numWorkers; ++dest) {

rows = (dest <= remainingRows) ? avgNumRows + 1 : avgNumRows;
MPI_Send(&offset, 1, MPI_INT, dest, TAG, MPI_COMM_WORLD);
MPI_Send(&rows, 1, MPI_INT, dest, TAG, MPI_COMM_WORLD);
count = rows * NCA;
// Send horizontal slice of A
MPI_Send(&A[offset][0], count, MPI_DOUBLE, dest, TAG, MPI_COMM_WORLD);
// Send matrix B
count = NCA * NCB;
MPI_Send(&B, count, MPI_DOUBLE, dest, TAG, MPI_COMM_WORLD);
offset += rows;

}

• Initialization

• Distribute
data to
workers

for (i = 1; i <= numworkers; ++i) {
source = i;
MPI_Recv(&offset, 1, MPI_INT, source, TAG, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, TAG, MPI_COMM_WORLD, &status);
count = rows * NCB;
MPI_Recv(&C[offset][0], count, MPI_DOUBLE, source, TAG,MPI_COMM_WORLD,&status);

}

• Wait for
results from
workers

Common to both master
and worker processes

MPI – Matrix Multiply (worker task)

source = 0;
MPI_Recv(&offset, 1, MPI_INT, source, TAG, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, TAG, MPI_COMM_WORLD, &status);
// Receive horizontal slice of A
count = rows * NCA;
MPI_Recv(&A, count, MPI_DOUBLE, source, TAG, MPI_COMM_WORLD, &status);
// Receive matrix B
count = NCA * NCB;
MPI_Recv(&B, count, MPI_DOUBLE, source, TAG, MPI_COMM_WORLD, &status);

• Receive data
from master

// Compute the usual matrix multiplication on the slice of matrix A and matrix B
for (k = 0; k < NCB; ++k) {

for (i = 0; i < rows; ++i) {
C[i][k] = 0.0;
for (j = 0; j < NCA; ++j) {

C[i][k] += A[i][j] * B[j][k];
}

}
}

destination = 0;
MPI_Send(&offset, 1, MPI_INT, destination, TAG, MPI_COMM_WORLD);
MPI_Send(&rows, 1, MPI_INT, destination, TAG, MPI_COMM_WORLD);
count = rows * NCB;
// Send horizontal slice of result matrix C computed on this node
MPI_Send(&C, count, MPI_DOUBLE, destination, TAG, MPI_COMM_WORLD);

• Process data

• Send results
back to
master

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models
! Shared Memory Programming
! Message Passing Programming

– MPI
– Charm++

! Shared Memory Models
! PGAS Languages
! Other Programming Models

Charm++

! C++ library for dynamic multithreaded applications

! Developed since 1993
– Prequel Chare Kernel developed since 1988

! Parallel Programming Laboratory at University of
Illinois at Urbana-Champaign

! Prof. Laxmikant V. Kale

Material from: http://charm.cs.uiuc.edu/

Charm++ – Programming Model
Execution Model

– Implicit parallelism
! Parallelism expressed at the task level (Chare)
! User unaware of concurrency

– Explicit communication
! Exclusively through asynchronous RMI (on Chare entry methods)
! User responsible for implementing packing/unpacking methods

– MPMD
– Message-driven execution
– Dynamic parallelism

! Every task is a thread
! Load-balancing with task migration

– Object Consistency model

Charm++ – Programming Model
Productivity

– Charmdebug graphical parallel debugger
– Graphical load balance monitor
– Relatively high level of abstraction

Performance
– Split-phase communication tolerates latency
– Static and dynamic load-balancing
– Processor virtualization

Portability
– Library implemented on top of MPI

Charm++ – Virtualization
Object-based decomposition

– Divide the computation into a large number of pieces
! Independent of the number of processors
! Preferably significantly larger than the number of processors

– Let the system map objects to processors

User view of Chares interaction System view of Chares mapping

Charm++ – Chares

! Dynamically created on any available
processor

! Can be accessed from other processors
– Chare_ID instead of Thread_ID (virtualization)

! Send messages to each other
asynchronously

! Contain entry methods that can be invoked
from other Chares

Charm++ – Chares

! User only required to think of the interaction
between chares

! Message-driven execution
– New Chares are only created as “Seed

messages”
– Construction happens when a first message

reaches the new Chare

Charm++ – “Hello World”

Charmc

HelloWorld.ci
mainmodule hello {

mainchare mymain {
entry mymain (CkArgMsg *m);

};
};

Generates:

• HelloWorld.decl.h

• HelloWorld.def.h

HelloWorld.C
#include “HelloWorld.decl.h”

class mymain : public Chare {
public:

mymain(CkArgMsg *m) {
ckout << “Hello world !” << endl;
CkExit();

}

};

Charm++ – Chare Arrays
! Array of Chare objects

– Each Chare communicates with the next one
– More structured view than individual chares

! Single global name for the collection
! Members addressed by index
! Mapping to processors handled by the system

A
[1]

A
[0]

A
[0]

A
[1]

A
[2]

A
[3]

A
[..]User view

System view Migration

A
[0]

A
[1]

Charm++ – Dynamic Load-Balancing

! Object (Chare) migration
– Array Chares can migrate from one processor

to another
– Migration creates a new object on the

destination processor and destroys the original
– Objects must define pack/unpack (PUP)

methods
! Initial load-balancing

– New Chares created on least loaded
processors

Charm++ – Dynamic Load-Balancing

! Centralized load-balancing
– High-quality balancing with global information
– High communication cost and latency

! Distributed load-balancing
– Same principle in small neighborhoods
– Lower communication cost
– Global load-imbalance may not be addressed

Charm++ – Split-phase Communication
! Asynchronous communication

– Sender does not block or wait for a return
– Sender provides callback handler that will process any return value

! Efficient for tolerating latency
– No explicit waiting for data
– No stalls with sufficient parallelism

Charm++

References
! MPI

– http://www.llnl.gov/computing/tutorials/mpi/
– http://www.mpi-forum.org/

! Charm++
– http://charm.cs.uiuc.edu/research/charm/
– http://charm.cs.uiuc.edu/papers/CharmSys1TPDS94.shtml
– http://charm.cs.uiuc.edu/papers/CharmSys2TPDS94.shtml
– http://charm.cs.uiuc.edu/manuals/html/charm++/
– https://agora.cs.uiuc.edu/download/attachments/13044/03_14charmT

utorial.ppt
– http://charm.cs.uiuc.edu/workshops/charmWorkshop2005/slides2005/

charm2005_tutorial_charmBasic.ppt

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models
! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models

– Cilk
– TBB
– HPF
– Chapel
– Fortress
– Stapl

! PGAS Languages
! Other Programming Models

Cilk
! Language for dynamic multithreaded applications

! Superset of C

! Developed since 1994

! Supercomputing Technologies Group at
MIT Laboratory for Computer Science

! Prof. Charles E. Leiserson
Materials from Charles Leiserson, “Multithreaded Programming in Cilk”,
http://supertech.csail.mit.edu/cilk/ . Used with permission.

http://supertech.csail.mit.edu/cilk/

Cilk extends C

! C elision
– Removal of Cilk keywords

produces valid sequential
C program

– A valid implementation of
the semantics of a Cilk
program

cilk int fib (int n) {
if (n < 2)
return n;

else {
int x, y;
x = spawn fib (n-1);

y = spawn fib (n-2);
sync;
return (x+y);

}
}

The Cilk Model

! Execution Model
– DAG consistency model
– Explicit Parallelism
– Explicit Synchronization

! Productivity
– Simple extension of an existing language
– No details of machine available to application
– Low level of abstraction
– No component reuse or language expansion possible
– Debug and tune using standard tools

DAG consistency
! Vertices are tasks
! Edges are data dependencies
! Read operation can see result

of write operation if:
– there is a serial execution order

of the tasks consistent with the
DAG where the read is executed
after the write

! Successors of a task
guaranteed to see write

! Other tasks may or may not
see the write

Write

Write
is

visible

Write
may be
visible

The Cilk Model

! Performance
– Developer easily generates high degree of parallelism
– Work stealing runtime scheduler provides load balance

! Portability
– Source-to-source compiler provided
– Runtime system must be ported to new platforms
– Applications completely unaware of underlying system

Cilk Thread Management

! Application completely unaware of threads
– Work split into Cilk threads

! Cilk thread is a task assigned to a processor
! Tasks scheduled to run on processors by runtime system
! “Spawn” of Cilk thread is 3-4 times more expensive than C

function call
– Runtime system employs work stealing scheduler

Work Stealing Task Scheduler
! Each processor maintains a deque of tasks

– Used as a stack
– Small space usage
– Excellent cache reuse

! Processor steals when nothing remains in deque
– Chooses random victim
– Treats victim deque as queue
– Task stolen is usually large

Cilk Synchronization

! Cilk_fence()
– All memory operations of a processor are committed

before next instruction is executed.

! Cilk_lockvar variables provide mutual exclusion
– Cilk_lock attempts to lock and blocks if unsuccessful
– Cilk_unlock releases lock
– Locks must be initialized by calling Cilk_lock_init()

Cilk Matrix Multiply
cilk void work(*A, *B, *C, i, L, N) {
for(int j=0; j<N; ++j) {
for(int k=0; k<L; ++k) {
C[i][j] +=

A[i][k]*B[k][j];
}

}
}

void matmul(*A, *B, *C, M, L, N) {
for(int i=0; i<M; ++i) {
spawn work(A, B, C, i, L, N);

}
sync;

}

Cilk Recursive Matrix Multiply

8 multiplications of (n/2) x (n/2) matrices.
1 addition of n x n matrices.

Divide and conquer —
C11 C12

C21 C22

= x
A11 A12

A21 A22

B11 B12

B21 B22

= +
A11B11 A11B12

A21B11 A21B12

A12B21 A12B22

A22B21 A22B22

cilk void Mult(*C, *A, *B, n) {
float *T = Cilk_alloca(n*n*sizeof(float));
h base case & partition matrices i
spawn Mult(C11,A11,B11,n/2);
spawn Mult(C12,A11,B12,n/2);
spawn Mult(C22,A21,B12,n/2);
spawn Mult(C21,A21,B11,n/2);
spawn Mult(T11,A12,B21,n/2);
spawn Mult(T12,A12,B22,n/2);
spawn Mult(T22,A22,B22,n/2);
spawn Mult(T21,A22,B21,n/2);
sync;
spawn Add(C,T,n);
sync;
return;

}

Matrix Multiply in Pseudo-Cilk

C = A�B
Absence of type

declarations.

cilk void Mult(*C, *A, *B, n) {
float *T = Cilk_alloca(n*n*sizeof(float));
h base case & partition matrices i
spawn Mult(C11,A11,B11,n/2);
spawn Mult(C12,A11,B12,n/2);
spawn Mult(C22,A21,B12,n/2);
spawn Mult(C21,A21,B11,n/2);
spawn Mult(T11,A12,B21,n/2);
spawn Mult(T12,A12,B22,n/2);
spawn Mult(T22,A22,B22,n/2);
spawn Mult(T21,A22,B21,n/2);
sync;
spawn Add(C,T,n);
sync;
return;

}

C = A�B
Coarsen base cases
for efficiency.

Matrix Multiply in Pseudo-Cilk

cilk void Mult(*C, *A, *B, n) {
float *T = Cilk_alloca(n*n*sizeof(float));
h base case & partition matrices i
spawn Mult(C11,A11,B11,n/2);
spawn Mult(C12,A11,B12,n/2);
spawn Mult(C22,A21,B12,n/2);
spawn Mult(C21,A21,B11,n/2);
spawn Mult(T11,A12,B21,n/2);
spawn Mult(T12,A12,B22,n/2);
spawn Mult(T22,A22,B22,n/2);
spawn Mult(T21,A22,B21,n/2);
sync;
spawn Add(C,T,n);
sync;
return;

}

C = A�B

Submatrices are
produced by pointer
calculation, not
copying of elements.

Also need a row-
size argument for
array indexing.

Matrix Multiply in Pseudo-Cilk

cilk void Mult(*C, *A, *B, n) {
float *T = Cilk_alloca(n*n*sizeof(float));
h base case & partition matrices i
spawn Mult(C11,A11,B11,n/2);
spawn Mult(C12,A11,B12,n/2);
spawn Mult(C22,A21,B12,n/2);
spawn Mult(C21,A21,B11,n/2);
spawn Mult(T11,A12,B21,n/2);
spawn Mult(T12,A12,B22,n/2);
spawn Mult(T22,A22,B22,n/2);
spawn Mult(T21,A22,B21,n/2);
sync;
spawn Add(C,T,n);
sync;
return;

}

C = AxB

cilk void Add(*C, *T, n) {
h base case & partition matrices i
spawn Add(C11,T11,n/2);
spawn Add(C12,T12,n/2);
spawn Add(C21,T21,n/2);
spawn Add(C22,T22,n/2);
sync;
return;

}C = C + T

Matrix Multiply in Pseudo-Cilk

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models
! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models

– Cilk
– TBB
– HPF
– Chapel
– Fortress
– Stapl

! PGAS Languages
! Other Programming Models

Threading Building Blocks

! C++ library for parallel programming

! STL-like interface for library components
– Algorithms accept Ranges that provide access to

Containers

! Initial release by Intel in August 2006

! Strongly influenced by Cilk, STAPL, and others

Intel® Threading Building Blocks

Low-Level Synchronization Primitives
atomic

spin_mutex
queuing_mutex

reader_writer_mutex
mutex

Generic Parallel Algorithms
parallel_for
parallel_while
parallel_reduce
pipeline

parallel_sort
parallel_scan

Concurrent Containers
concurrent_hash_map
concurrent_queue
concurrent_vector

Task Scheduler

Timing
tick_count

Memory Allocation
cache_aligned_allocator

The TBB Model
! Execution Model

– Implicit parallelism
– Mixed synchronization

! Locks provided for mutual exclusion
! Containers provide safe concurrent access

! Productivity
– Library for an existing language

! Provides components for reuse
– Few details of machine available to developer
– Higher level of abstraction
– Timing class provided in library for manual tuning
– Designed to be interoperable with OpenMP and Pthreads

The TBB Model

! Performance
– Algorithms attempt to generate high degree of parallelism
– Same work stealing algorithm as Cilk for load balance

! Portability
– Library implementation must be ported to new platforms
– Currently requires x86 architecture

TBB Thread Management
! Developer mostly unaware of threads

– Can specify the desired thread count at TBB initialization
– Runtime system defaults to single thread per processor

! Developer creates tasks instead of threads
– Tasks mapped to threads by runtime scheduler as in Cilk
– TBB algorithms attempt to generate many tasks

! TBB runtime system handles management of
threads used to process tasks

TBB Synchronization
Task synchronization
! Tasks are logical units of computation
! Tasks dynamically create new tasks

– Split-join model applied to child tasks
– Parent task may specify a task to be executed when all

child tasks complete (explicit continuation)
– Parent task may block and wait on children to complete

before it finishes (implicit continuation)
! Cilk threads use this model

! TBB algorithms generate and manage tasks
– Use continuations to implement execution pattern

TBB Synchronization
Concurrent Containers
! Allow threads to access data concurrently
! Whole-container methods

– Modify entire container
– Must be executed by a single task

! Element access methods
– Multiple tasks may perform element access/modification
– Containers use mutexes as needed to guarantee

consistency

TBB Synchronization
Low-level Synchronization Primitives
! Atomic template class provides atomic operations

– Type must be integral or pointer
– read, write, fetch-and-add, fetch-and-store,

compare-and-swap operations provided by class

! Mutexes use scoped locking pattern
– lock released when variable leaves scope
– initialization of variable is lock acquisition
{
// myLock constructor acquires lock on myMutex
M::scoped_lock myLock(myMutex);
... actions to be performed while holding the lock ...
// myLock destructor releases lock on myMutex
}

TBB Synchronization
Low-level Synchronization Primitives
Mutex Implements mutex concept using underlying

OS locks (e.g., pthread mutexes)

Spin Mutex Thread busy waits until able to acquire lock

Queuing Mutex Threads acquire lock on mutex in the order
they request it.

Reader-Writer
Mutex

Multiple threads can hold lock if reading.
Writing thread must have exclusive lock on
mutex

TBB Matrix Multiply

task_scheduler_init init;
parallel_for(
blocked_range<size_t>(0,M,1),
work(A,B,C,L,M)

);

class work {
//data members A,B,C,L,N

public:
void operator()(const blocked_range<size_t>& r) const {
for(int i = r.begin(); i != r.end(); ++i) {
for(int j=0; j<N; ++j) {
for(int k=0; k<L; ++k) {
C[i][j] += A[i][k]*B[k][j];

}
}

}
}

};

Grainsize parameter
determines how many
iterations will be executed by
a thread at once.

TBB Parallel Sum
class sum {
float* a;

public:
float sum;

void operator()(const blocked_range<size_t>& r) {
for(size_t i=r.begin(); i!=r.end(); ++i)
sum += a[i];

}

void join(sum& other) { sum += other.sum; }
};

float ParallelSumFoo(float a[], size_t n) {
sum sum_func(a);
parallel_reduce(blocked_range<size_t>(0,n,1), sum_func);
return sum_func.sum;

}

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models
! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models

– Cilk
– TBB
– HPF -- influential but failed
– Chapel
– Fortress
– Stapl

! PGAS Languages
! Other Programming Models

HPF - High Performance Fortran
! History

– High Performance Fortran Forum (HPFF) coalition founded in
January 1992 to define set of extensions to Fortran 77

– V 1.1 Language specification November, 1994
– V 2.0 Language specification January, 1997

! HPF
– Data Parallel (SPMD) model
– Specification is Fortran 90 superset that adds FORALL statement

and data decomposition / distribution directives

* Adapted from presentation by Janet Salowe - http://www.nbcs.rutgers.edu/hpc/hpf{1,2}/

The HPF Model
! Execution Model

– Single-threaded programming model
– Implicit communication
– Implicit synchronization
– Consistency model hidden from user

! Productivity
– Extension of Fortran (via directives)
– Block imperative, function reuse
– Relatively high level of abstraction
– Tunable performance via explicit data distribution
– Vendor specific debugger

The HPF Model
! Performance

– Latency reduction by explicit data placement
– No standardized load balancing, vendor could implement

! Portability
– Language based solution, requires compiler to recognize
– Runtime system and feature vendor specific, not modular
– No machine characteristic interface
– Parallel model not affected by underlying machine
– I/O not addressed in standard, proposed extensions exist

HPF - Concepts

! DISTRIBUTE - replicate or decompose data
! ALIGN - coordinate locality on processors
! INDEPENDENT - specify parallel loops
! Private - declare scalars and arrays local to a

processor

Data Mapping Model
! HPF directives - specify data object allocation
! Goal - minimize communication while maximizing

parallelism
! ALIGN - data objects to keep on same processor
! DISTRIBUTE - map aligned object onto processors
! Compiler - implements directives and performs data

mapping to physical processors
– Hides communications, memory details, system specifics

Data Objects Align Objects Abstract
Processors

Physical
Processors

HPF

Ensuring Efficient Execution
! User layout of data
! Good specification to compiler (ALIGN)
! Quality compiler implementation

Simple Example (Integer Print)
INTEGER, PARAMETER :: N=16

INTEGER, DIMENSION(1:N):: A,B
!HPF$ DISTRIBUTE(BLOCK) :: A
!HPF$ ALIGN WITH A :: B
DO i=1,N
A(i) = i
END DO
!HPF$ INDEPENDENT
FORALL (i=1:N) B(i) = A(i)*2
WRITE (6,*) 'A = ', A
WRITE (6,*) 'B = ', B
STOP
END

Output:

0: A = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0: B = 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

HPF Compiler Directives
trigger-string hpf-directive

! trigger-string - comment followed by HPF$
! hpf-directive - an HPF directive and its arguments

– DISTRIBUTE, ALIGN, etc.

HPF - Distribute
! !HPF$ DISTRIBUTE object (details)

– distribution details - comma separated list, for each
array dimension
! BLOCK, BLOCK(N), CYCLIC, CYCLIC(N)

– object must be a simple name (e.g., array name)
– object can be aligned to, but not aligned

HPF - ALIGN
! !HPF$ ALIGN alignee(subscript-list)

WITH object(subscript-list)
! alignee - undistributed, simple object
! subscript-list

– All dimensions
– Dummy argument (int constant, variable or expr.)
– :
– *

HPF - ALIGN
Equivalent directives, with !HPF$ DISTRIBUTE

A(BLOCK,BLOCK)

!HPF$ ALIGN B(:,:) WITH A(:,:)
!HPF$ ALIGN (i,j) WITH A(i,j) :: B
!HPF$ ALIGN (:,:) WITH A(:,:) :: B
!HPF$ ALIGN WITH A :: B

Example
Original F77 HPF

HPF - Alignment for Replication
! Replicate heavily read arrays, such as lookup tables, to

reduce communication
– Use when memory is cheaper than communication
– If replicated data is updated, compiler updates ALL copies

! If array M is used with every element of A:
INTEGER M(4)
INTEGER A(4,5)
!HPF$ ALIGN M(*) WITH A(i,*)

M(:)
M(:)
M(:)
M(:)

A(1,:)
A(2,:)
A(3,:)
A(4,:)

HPF Example - Matrix Multiply
PROGRAM ABmult
IMPLICIT NONE
INTEGER, PARAMETER :: N = 100
INTEGER, DIMENSION (N,N) :: A, B, C
INTEGER :: i, j
!HPF$ DISTRIBUTE (BLOCK,BLOCK) :: C
!HPF$ ALIGN A(i,*) WITH C(i,*)
! replicate copies of row A(i,*)
! onto processors which compute C(i,j)
!HPF$ ALIGN B(*,j) WITH C(*,j)
! replicate copies of column B(*,j))
! onto processors which compute C(i,j)
A = 1
B = 2
C = 0
DO i = 1, N
DO j = 1, N
! All the work is local due to ALIGNs
C(i,j) = DOT_PRODUCT(A(i,:), B(:,j))
END DO
END DO
WRITE(*,*) C

HPF - FORALL
! A generalization of Fortran 90 array assignment (not a loop)
! Does assignment of multiple elements in an array, but order

not enforced
! Uses

– assignments based on array index
– irregular data motion
– gives identical results, serial or parallel

! Restrictions
– assignments only
– execution order undefined
– not iterative

FORALL (I=1:N) B(I) = A(I,I)
FORALL (I = 1:N, J = 1:N:2, J .LT. I) A(I,J) = A(I,J) / A(I,I)

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models
! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models

– Cilk
– TBB
– HPF
– Chapel
– Fortress
– Stapl

! PGAS Languages
! Other Programming Models

Chapel

! The Cascade High-Productivity Language (Chapel)
– Developed by Cray as part of DARPA HPCS program
– Draws from HPF and ZPL
– Designed for “general” parallelism

Supports arbitrary nesting of task and data parallelism

– Constructs for explicit data and work placement
– OOP and generics support for code reuse

Adapted From:http://chapel.cs.washington.edu/ChapelForAHPCRC.pdf

The Chapel Model

! Execution Model
– Explicit data parallelism with forall
– Explicit task parallelism forall, cobegin, begin

– Implicit communication
– Synchronization

! Implicit barrier after parallel constructs
! Explicit constructs also included in language

– Memory Consistency model still under development

Chapel - Data Parallelism

! forall loop
loop where iterations performed concurrently

forall i in 1..N do
a(i) = b(i);

alternative syntax:

[i in 1..N] a(i) = b(i);

Chapel - Task Parallelism
! forall expression

allows concurrent evaluation expressions

[i in S] f(i);

! cobegin
indicate statement that may run in parallel

cobegin {
ComputeTaskA(…);
ComputeTaskB(…);

}

! begin
spawn a computation to execute a statement

begin ComputeTaskA(…); //doesn’t rejoin
ComputeTaskB(…); //doesn’t wait for ComputeTaskA

Chapel - Matrix Multiply
var A: [1..M, 1..L] float;
var B: [1..L, 1..N] float;
var C: [1..M, 1..N] float;

forall (i,j) in [1..M, 1..N] do
for k in [1..L]
C(i,j) += A(i,k) * B(k,j);

Chapel - Synchronization
! single variables

– Chapel equivalent of futures

– Use of variable stalls until variable assignment
var x : single int;
begin x = foo(); //sub computation spawned
var y = bar;
return x*y; //stalled until foo() completes.

! sync variables
– generalization of single, allowing multiple assignments
– full / empty semantics, read ‘empties’ previous assignment

! atomic statement blocks
– transactional memory semantics
– no changes in block visible until completion

Chapel - Productivity

! New programming language
! Component reuse

– Object oriented programming support
– Type generic functions

! Tunability
– Reduce latency via explicit work and data distribution

! Expressivity
– Nested parallelism supports composition

! Defect management
– ‘Anonymous’ threads for hiding complexity of concurrency

no user level thread_id, virtualized

Chapel - Performance

! Latency Management
– Reducing

! Data placement - distributed domains

! Work placement - on construct

– Hiding
! single variables
! Runtime will employ multithreading, if available

Chapel - Latency Reduction
! Locales

– Abstraction of processor or node
– Basic component where memory accesses are assumed uniform
– User interface defined in language

! integer constant numLocales
! type locale with (in)equality operator
! array Locales[1..numLocales] of type locale

var CompGrid:[1..Rows, 1..Cols] local = ...;

! Domain
– set of indices specifying size and shape of aggregate types (i.e.,

arrays, graphs, etc)

var m: integer = 4;
var n: integer = 8;
var D: domain(2) = [1..m, 1..n];
var DInner: domain(D) = [2..m-1, 2..n-1]

var StridedD: domain(D) = D by (2,3);

var indexList: seq(index(D)) = ...;
var SparseD: sparse domain(D) = indexList;

Chapel - Latency Reduction

! Declaring arrays
var A, B: [D] float

! Sub-array references
A(Dinner) = B(Dinner);

! Parallel iteration
forall (i,j) in Dinner { A(i,j} = ...}

Chapel - Domains

Chapel - Latency Reduction
! Distributed domains

– Domains can be explicitly distributed across locales
var D: domain(2) distributed(block(2) to CompGrid) = ...;

– Pre-defined
! block, cyclic, block-cyclic, cut

– User-defined distribution support in development

Chapel - Latency Reduction
! Work Distribution with on

cobegin {
on TaskALocs do ComputeTaskA(...);
on TaskBLocs do ComputeTaskB(...);

}

alternate data-driven usage:

forall (i,j) in D {
on B(j/2, i*2) do A(i,j) = foo(B(j/2, i*2));

}

Chapel - Portability
! Language based solution, requires compiler

! Runtime system part of Chapel model. Responsible for mapping
implicit multithreaded, high level code appropriately onto target
architecture

! locales machine information available to programmer

! Parallel model not effected by underlying machine

! I/O API discussed in standard, scalability and implementation not
discussed

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models
! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models

– Cilk
– TBB
– HPF
– Chapel
– Fortress
– Stapl

! PGAS Languages
! Other Programming Models

The Fortress Model
! Developed by Sun for DARPA HPCS program

! Draws from Java and functional languages

! Emphasis on growing language via strong library
development support

! Places parallelism burden primarily on library developers

! Use of extended Unicode character set allow syntax to
mimic mathematical formulas

Adapted From: http://irbseminars.intel-research.net/GuySteele.pdf

The Fortress Model
Execution Model
! User sees single-threaded execution by default

– Loops are assumed parallel, unless otherwise specified

! Data parallelism
– Implicit with for construct
– Explicit ordering via custom Generators

! Explicit task parallelism
– Tuple and do all constructs
– Explicit with spawn

The Fortress Model
Execution Model
! Implicit communication

! Synchronization
– Implicit barrier after parallel constructs
– Implicit synchronization of reduction variables in for loops
– Explicit atomic construct (transactional memory)

! Memory Consistency
– Sequential consistency under constraints

! all shared variable updates in atomic sections

! no implicit reference aliasing

Fortress - Data Parallelism

! for loops - default is parallel execution

1:N and seq(1:N) are generators
seq(1:N) is generator for sequential execution

Fortress - Data Parallelism

! Generators
– Controls parallelism in loops
– Examples

! Aggregates - <1,2,3,4>
! Ranges - 1:10 and 1:99:2
! Index sets - a.indices and a.indices.rowMajor
! seq(g) - sequential version of generator g

– Can compose generators to order iterations
seq(<5,<seq(<1,2>), seq(<3,4>)>>)

1 2 3 4

5

Fortress - Explicit Task Parallelism

! Tuple expressions
– comma separated exp. list executed

concurrently
(foo(), bar())

! do-also blocks
– all clauses executed concurrently

do
foo()

also do
bar()

end

Fortress - Explicit Task Parallelism

! Spawn expressions (futures)
…
v = spawn do
…

end
…
v.val() //return value, block if not completed
v.ready() //return true iff v completed
v.wait() //block if not completed,

! //no return value
v.stop() //attempt to terminate thread

Fortress - Synchronization

! atomic blocks - transactional memory
– other threads see block completed or not yet started
– nested atomic and parallelism constructs allowed
– tryatomic can detect conflicts or aborts

Fortress - Productivity

! Defect management
– Reduction

! explicit parallelism and tuning primarily confined to libraries
– Detection

! integrated testing infrastructure

! Machine model
– Regions give abstract machine topology

Fortress - Productivity

Expressivity
! High abstraction level

– Source code closely matches formulas via extended Unicode charset
– Types with checked physical units
– Extensive operator overloading

! Composition and Reuse
– Type-based generics
– Arbitrary nested parallelism
– Inheritance by traits

! Expandability
– ‘Growable’ language philosophy aims to minimize core language

constructs and maximize library implementations

Fortress - Productivity

! Implementation refinement
– Custom generators, distributions, and thread placement

! Defect management
– Reduction

! explicit parallelism and tuning primarily confined to libraries

– Detection
! integrated testing infrastructure

! Machine model
– Regions give abstract machine topology

Fortress - Matrix Multiply

matmult(A: Matrix[/Float/],
B: Matrix[/Float/])
: Matrix[/Float/]

A B
end

C = matmult(A,B)

Fortress - Performance

! Regions for describing system topology

! Work placement with at

! Data placement with Distributions

! spawn expression to hide latency

Fortress - Regions
! Tree structure of CPUs and memory resources

– Allocation heaps
– Parallelism
– Memory coherence

! Every thread, object, and array
element has associated region

obj.region() //region where object obj is located
r.isLocalTo(s) //is region r in region tree rooted at s

! Explicit work placement with at

inside do also

with spawn

regular block stmt

Fortress - Latency Reduction

! Explicit data placement with Distributions

a = Blocked.array(n,n,1); //Pencils along z axis

! User can define custom distribution by inheriting
Distribution trait
– Standard distributions implemented in this manner

Fortress - Latency Reduction

Fortress - Portability
! Language based solution, requires compiler
! Runtime system part of Fortress implementation

Responsible for mapping multithreaded onto target
architecture

! Regions make machine information available to
programmer

! Parallel model not affected by underlying machine

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models
! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models

– Cilk
– TBB
– HPF
– Chapel
– Fortress
– Stapl (not really)

! PGAS Languages
! Other Programming Models

The STAPL Model

! Standard Adaptive Parallel Library

! Developed by Lawrence Rauchwerger, Nancy Amato

and several grad students and postdocs at Texas A&M

! Library similar and compatible with to STL

! Strong library development support

! Places parallelism burden primarily on library developers

! Influenced in earlier versions: Intel TBB

Adapted From: http://irbseminars.intel-research.net/GuySteele.pdf

STAPL: Standard Template Adaptive Parallel Library

A library of parallel components that
adopts the generic programming
philosophy of the C++ Standard
Template Library (STL)

–Application Development Components
§ pAlgorithms, pContainers, Views, pRange

§ Provide Shared Object View to eliminate
explicit communication in application

–Portability and Optimization
§ Runtime System(RTS) and

Adaptive Remote Method Invocation (ARMI)
Communication Library

§ Framework for Algorithm Selection and
Tuning (FAST)

Three STAPL Developer Levels

! Application Developer
– Writes application
– Uses pContainers, pAlgorithms, and Views

! Library Developer
– Writes new pContainers and pAlgorithms
– Uses pRange and RTS

! Run-time System Developer
– Ports system to new architectures
– Writes task scheduling modules
– Uses native threading and

communication libraries

User Application Code

pAlgorithms Views
pContainers

Pthreads, OpenMP, MPI, Native, …

Run-time System
ARMI Communication
Library

Scheduler Executor Performance
Monitor

pRange

Standard Template Library (STL)
Generic programming components using C++ templates.
! Containers - collection of other objects.

– vector, list, deque, set, multiset, map, multi_map, hash_map.
– Templated by data type. vector<int> v(50);

! Algorithms - manipulate the data stored in containers.
– manipulate the data stored in containers.
– count(), reverse(), sort(), accumulate(), for_each(), reverse().

! Iterators - Decouple algorithms from containers.
– Provide generic element access to data in containers.
– can define custom traversal of container (e.g., every other element)
– count(vector.begin(), vector.end(), 18);

Algorithm ContainerIterator

Execution Model

• Two models: User and Library Developer
• Single threaded – User

• Multithreaded – Developer

• Shared memory – User

• PGAS – Developer
• Data & task parallelism
• Implicit communications: User

• Explicit communications: Developer

Execution Model

– Memory Consistency:
– Sequential for user

– Relaxed for developer (Object level)
– Will be selectable

– Atomic methods for containers
– Synchronizations: Implicit & Explicit

STAPL Components

– Components for Program Development
§ pContainers, Views, pRange, pAlgorithms

– Run-time System
§ Adaptive Remote Method Invocation (ARMI)

§ Multithreaded RTS

§ Framework for Algorithm Selection and Tuning
(FAST)

pContainers

Generic, distributed data structures with parallel
methods.

! Ease of Use
– Shared object view
– Generic access mechanism through Views
– Handles data distribution and remote data access internally
– Interface equivalent with sequential counterpart

! Efficiency
– OO design to optimize specific containers
– Template parameters allow further customization

! Extendability
– New pContainters extend Base classes

! Composability
– pContainers of pContainers

Currently Implemented
pArray, pVector, pGraph, pMap, pHashMap, pSet, pList

pContainer Taxonomy

Static
pContainer

AssociativeBase
<Key, Value> Sequence

<Value>

- pList

pContainerBase

Dynamic
pContainer

pVector/pList/pArray/
pGraph/...

Simple
Associative

<Key=Value>

 - pSet

Pair
Associative

<Key,Value>

- pMap
-pHashMap

Indexed
<Value>

Index is the implicit
Key
 - pVector/pArrays
 - HTA

New
Specialized
pContainer

Specific Properties
(traits) can

augment the traits
provided by
pContainer
framework

Relationship
<Value,Relation>

- pGraph
- pGeneric Trees

Relationship pContainersAssociative pContainers

RelationshipBase
<Value,Relation>

pContainers :

Parallel Containers

! Container - Data structure with an interface to maintain and
access a collection of generic elements
– STL (vector, list, map, set, hash), MTL[1] (matrix), BGL[2] (graph), etc.

! pContainer - distributed storage and concurrent methods
– Shared Object View

– Compatible with sequential counterpart (e.g., STL)
– Thread Safe
– Support for user customization (e.g., data distributions)
– Currently Implemented: pArray, pVector, pList, pGraph, pMatrix,

pAssociative

1] Matrix Template Library 2] Boost Graph Library

pContainer Framework

Concepts and methodology for developing parallel containers

– pContainers - a collection of base containers and
information for parallelism management

– Improved user productivity
! Base classes providing fundamental functionality

" Inheritance
" Specialization

! Composition of existing pContainers

– Scalable performance
! Distributed, non replicated data storage
! Parallel (semi-random) access to data
! Low overhead relative to the base container counterpart

c d e f

a b

a b

e f
c d ca b fd e

Location 0 Location 1 Location 0 Location 1

User Levelp_array pa(6)
2 3 4 50 1

Base
Containers

Data Distribution
Info_0 Info_1

! Base Container : data storage
– sequential containers (e.g., STL, MTL, BGL)
‒ parallel containers (e.g., Intel TBB)

! Data Distribution Information
- Shared object view
- Global Identifier, Domain, Partition,
Location, Partition Mapper

pContainer Framework Concepts

Data Distribution
Info_0 Info_1

pContainer Interfaces
– Constructors

! Default constructors
! May specify a desired data distribution

– Concurrent Methods
! Sync, async, split phase

– Views

stapl_main(){
partition_block_cyclic partition(10); //argument is block size
p_matrix<int> data(100, 100, partition);
1D_view<int> view(data);
p_generate(view, rand());
res=p_accumulate(view);

}

Method Aggregation Support

! pContainers support three types of methods:
synchronous, asynchronous and split phase.

! Asynchronous and split phase methods benefit from
– Aggregation : better communication computation overlap
– Combining : same method is repeatedly invoked

! Aggregation may negatively affect performance when
data is needed immediately
– Need for adaptivity

pContainer Customization

Optional user customization through pContainer Traits.

! Enable/Disable Performance Monitoring.
! Select Partition Strategies.
! Enable/Disable Thread Safety.
! Select Consistency Models

class p_array_traits {
Indexed, Assoc/Key=Index,
Static,IndexedView<Static,..., Random>,
DistributionManagerTraits,
-u-Monitoring,
-u-Relaxed
}

Views

! A View defines an abstract data type that provides
methods for access and traversal of the elements of a
pContainer that is independent of how the elements are
stored in the pContainer.
– Example: Matrix View of the elements in a pVector

! A View has four primary components
– The pContainer that stores the data being ordered
– A Domain that defines which elements of the pContainer are

visible
– A Mapping Function that translates between View and

pContainer indices
– The Set of Operations that define the data access operations

supported

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

View Example

1 2 3

4 5 6

7 8 9

Matrix

Rows view Columns view

Output
1,2,3,4,5,6,7,8,9

Output
1,4,7,2,5,8,3,6,9

! Print elements of Matrix
– row-wise or column-wise?
– Implement several print methods…
– Use one generic print method with different views

print(View v)
for i=1 to v.size() do

print(v[i])

Iterators, Ranges, and Views

! Iterators : Abstraction of pointers
– Provide element access and traversal.
– Algorithms decoupled from containers (e.g., STL)
– Naturally sequential, limited use in parallel environments Iterator

Begin End

Container

Container

Container

View1

View2

! Ranges:	Combine	two	iterators	(start	and	end)
– All the advantages of iterators
– Split range and process subranges in parallel (e.g., TBB)
– Some algorithms (e.g., blocked matmul) not easy/intuitive

to implement

! Views: define	an	abstract	data	type
– Allow decoupling of container interface and storage
– Provide container behavior (interface)
– Allow transformation of one data structure into another
– Work well in parallel environments

Using Views in STAPL

! Views can be partitioned into subviews
– Partition expresses the finest grain of data used in an algorithm
– Each subview may be processed in parallel

! Partitions identified for parallel versions of STL algorithms
– Proper partition (accumulate, find, etc.)

– Overlap partition (adjacent difference)

– Full overlap partition (substring matching)

a b c d e f a b c d e f a b c d e f

a b c d e f a b c b c d c d e d e f

a b c d e f a b c d e f

pContainers and Views in the

STAPL Programming Model

! Provide Shared object view of data to application
– Data partition and distribution can be specified.
– Implementation of distribution encapsulated in pContainer.

! Allows storage independent data access
– Views provide data access operations
– View domains can be partitioned independently of data

storage in pContainer.

! User focused on application instead of data access
and distribution details.

pAlgorithms

! Build and execute pRanges to perform computation
! Easy to develop

– Work functions look like sequential code
– Work functions can call STAPL pAlgorithms
– pRange factories simplify task graph construction

! STAPL pAlgorithms accelerate application development
– Basic building blocks for applications
– Parallel equivalents of STL algorithms
– Parallel algorithms for pContainers

! Graph algorithms for pGraphs
! Numeric algorithms/operations for pMatrices

! Demonstrate how to code in the STAPL programming model.

Parallel Count
! Count how many elements matches a given predicate

Template <typename Func>
size_t
stapl::count_if(View view, Func f)

{
return
map_reduce(

f,
stapl::plus<size_t>,
view,

);
}

map operation

reduce operation

class Func {
public:

template <typename T>
bool operator() (T x) {

return ...;
}

};

Parallel Sample Sort
! pAlgorithm written using sequence of task graphs.
p_sort(View view, Op comparator)

// handle recursive call
if (view.size() <= get_num_locations())

reduce(view, merge_sort_work_function(comparator));

sample_view = map(view, select_samples_work_function());

// sort the samples
p_sort(sample_view, comparator);

// paritition the data using the samples
partitioned_view = map(view, full_overlap_view(sample_view),

bucket_partition_work_function(comparator));

// sort each partition
map(partitioned_view, sort_work_function(comparator));

Paragraph Page Rank
Algorithm

page_rank(GView graph, SrcView source_view, TgtView target_view) {
map(init(damping), source_view)//initial rank
while(!done()) {

//Initialize/Reset target_view
map(init(1-damping), target_view);

//update neighboring page ranks based on each page’s rank.
map(page_rank_task(), graph.vertices(), source_view, target_view);

//copy updated ranks
p_copy(target_view, source_view);

}
}

Paragraph:

Task Graphs in STAPL

! Task
– Work function
– Data to process

! Task dependencies
– Expressed in

Task Dependence Graph (TDG)
– TDG queried to find tasks

ready for execution

Task

View

Work Function

901345675628

View

Constructing Task Graphs
! Task Factory

– Given work functions to use and views.
– Constructs the pRange tasks and specifies dependencies.
– Encodes a particular computation pattern.

(e.g. doall, reduce, etc.)
! Task Factory generates tasks incrementally

– pRange requests an initial set of tasks from the factory.
– pRange asks factory for more tasks as execution progresses.
– pRange execution is complete when all tasks have been

generated and executed.
– Example: Incremental generation

of map-reduce on 2 locations

Location 0 Location 1

! Factories generate tasks in a distributed manner
– Domain of views to be processed is split across locations
– A location may generate a task whose data is not local
– Solution: Query domain for locality information and forward task

! Tasks processing multiple views collect votes and then elect location.
! Location election algorithm can be specified for each task graph instantiation.
! Domains return a definite location or the location where election is repeated.

– Example: Task computing C[2][2] += A[2][1] * B[1][2]
! Each block is on a separate location. No location has majority.
! Location election specified to give priority to location with writes.
! Allows specialization of task to use BLAS.

1 2 3

4 5 6

7 8 9

Matrix C

Task Placement

1 2 3

4 5 6

7 8 9

Matrix A
1 2 3

4 5 6

7 8 9

Matrix B

+= *

Task will be placed
on location 5 for
processing.

Processing Task Graphs

! pRanges are processed by the Executor.
– Component of the Runtime System.
– Allows scheduling the execution order of ready tasks.

(E.g., execute tasks on critical path of task graph first)

execute(pRange prange)
while(!prange.finished())

runtime_scheduler.insert(prange.get_ready_tasks())
foreach task in runtime_scheduler

task() // execute the task
prange.processed(task.id) // report execution to pRange

endfor
endwhile

end

Result Forwarding

! Result of a task may be needed by a non-local task.
! Tasks created notify predecessors of their location.
! Predecessor task sends result to all successor locations

when it executes.
! Functionality is encapsulated in data_flow_view class.

– Task graph factories specify only that a task consumes a result
– Task registration and result forwarding hidden from pRange.

Location 0 Location 1

Data Parallelism withParagraph

Task Factories for common parallel patterns are provided.
! Map

– Apply work function to each element of input view.
! Reduce

– Apply binary reduction operator to input view.
! Map-Reduce

– Reduction performed on results of map operation.
! Prefix Scan

– Produces task graph for prefix sum algorithm.

New patterns can be added as needed.
pContainer c
make_reduce(c.view(), plus())

! Task parallelism achieved through pRange composition.
! Static composition

– Parallel – execution of pRanges’ tasks are interleaved arbitrarily
– Sequential – tasks of first pRange executed before tasks of second

! Dynamic composition
– Allows conditional and repeated execution of pRanges
– Repeat-until – process the pRange until the condition given is false
– If-then-else – process one of two pRanges based on a condition
– Switch – process one pRange from a set based on an input value

Task Parallelism with Paragraph

View source, destination
View friends, neighbors
parallel(map(copy(), source.view(), destination.view()),

map(equal(), friends.view(), neighbors.view()))

Copy Tasks Equal Tasks
Composed pRange Tasks

Dynamic Task Graphs
! Factories can’t express all parallel computation efficiently.

– Graph Traversal: complete specification requires doing traversal.
– Work List Algorithms: new elements for processing added by tasks.

! pRange allows addition of tasks during execution.
– Only one task has to be specified initially to begin computation.
– New tasks can depend on tasks already present in the pRange.

stapl_main() {
pGraph g;
//initialize g;
make_dynamic(g.view(), traverse_from_vertex, vertex(0))

}

traverse_from_vertex(Vertex v) {
//process data stored in vertex
foreach (edge in v.outgoing_edges())

prange.add_task(edge.destination, traverse_from_vertex)
}

Paragraph in the
STAPL Programming Model

! Allows concise specification of parallel algorithms
– Factories for common computation patterns provided.
– New factories leverage entire task graph implementation.
– Dynamic tasks available when capturing pattern in a

factory is expensive/impossible.

! Avoids performance penalty of abstract data access
– Task placement maximizes locality of data to process.
– Result forwarding is efficient placement of new data with

the tasks that need it.

! Developer focused on algorithm operations instead
of task placement.

pRange -- Task Graphs in
STAPL

! Data to be processed by pAlgorithm
– View of input data
– View of partial result storage

! Work Function
– Sequential operation
– Method to combine partial results

! Task
– Work function
– Data to process

! Task dependencies
– Expressed in Task Dependence Graph (TDG)
– TDG queried to find tasks ready for execution

Task

View

Work Function

8 2 6 5 7 6 5 4 3 1 0 9

View

Task graph of pAlgorithm

56

8 2 6 5 7 6 5 4 3 1 0 9

16 18 12 10

= Find sum of elements

= Combine partial results

A task is a work function and
the set of data to process.

Tasks aren’t independent.
Dependencies specify

execution order of tasks.

Composing Task Graphs
! Increases amount of concurrent work available
! Forms a MIMD computation
! Dependencies between tasks specified during

composition

= Find sum of elements

= Combine partial results

= Add 7 to each element

Dependencies only needed
if tasks process the same
data

Simple Dependence
Specification

! Goal: Developer concisely expresses
dependencies
– Enumeration of dependencies is unmanageable

! Common patterns will be supported in pRange
– Sequential – sources depend on sinks
– Independent – no new dependencies needed in

composed graph
– Pipelined – dependencies follow a regular pattern

Discrete Ordinates Particle
Transport Computation

! Important application for DOE
– E.g., Sweep3D and UMT2K

! Large, on-going DOE project at TAMU to develop
application in STAPL (TAXI)

One sweep Eight simultaneous sweeps

1

2 5

3 6

4 7

8

10 13

18 2112 15

14 1711

9

22 2516 19

26 2920 23

3024 27

28 31

32

prA
4

3 8

2 7

1 6

5

11 16

19 249 14

15 2010

12

23 2813 18

27 3217 22

3121 26

25 30

29

prB

Pipeline Pattern Example

4321

8765

1211109

16151413

201918

242322

282726

323130

17

21

25

29

AB

pRange composed_pr(prA, prB, Pipeline(4,32,4));

n pRanges are sweeps in
particle transport
application

n Reflective materials on
problem boundary
create dependencies

n Pipeline pattern will
allow easy composition

Paragraph Summary
! Binds the work of an algorithm to the data

! Simplifies programming task graphs
– Methods to create tasks
– Common dependence pattern specifications
– Compact specification of task dependencies
– Manages task refinement
– Simple specification of task graph composition

! Supports multiple programming models
– Data-parallelism
– Task-parallelism

RTS – Current state

Application Specific Parameters

Smart Application

STAPL RTS

ARMI Executor

K42 User-Level

Dispatcher

Kernel Scheduler
(no custom scheduling, e.g. NPTL)Operating System

Memory ManagerAdvanced stage

Experimental stage:
multithreading

ARMI Executor

Comm. Thread

RMI Thread

Task Thread

Custom scheduling

Kernel scheduling

ARMI – Current State

ARMI: Adaptive Remote Method Invocation
– Abstraction of shared-memory and message passing

communication layer (MPI, pThreads, OpenMP, mixed, Converse).

– Programmer expresses fine-grain parallelism that ARMI adaptively
coarsens to balance latency versus overhead.

– Support for sync, async, point-to-point and group communication.

– Automated (de)serialization of C++ classes.

ARMI can be as easy/natural as shared memory and as
efficient as message passing.

ARMI Communication Primitives
Point to Point Communication

armi_async - non-blocking: doesn’t wait for request arrival or completion.
armi_sync - blocking and non-blocking versions.

Collective Operations

armi_broadcast, armi_reduce, etc.
can adaptively set groups for communication.

Synchronization

armi_fence, armi_barrier - fence implements distributed termination algorithm
to ensure that all requests sent, received, and serviced.

armi_wait - blocks until at least at least one request is received and serviced.
armi_flush - empties local send buffer, pushing outstanding to remote

destinations.

RTS – Multithreading (ongoing work)

In ARMI
! Specialized communication thread dedicated the emission and

reception of messages
– Reduces latency, in particular on SYNC requests

! Specialized threads for the processing of RMIs
– Uncovers additional parallelism (RMIs from different sources can

be executed concurrently)
– Provides a suitable framework for future work on relaxing the consistency

model and on the speculative execution of RMIs
In the Executor
! Specialized threads for the execution of tasks

– Concurrently execute ready tasks from the DDG (when all dependencies
are satisfied)

RTS Consistency Models

Processor Consistency (default)
– Accesses from a processor on another’s memory are sequential
– Requires in-order processing of RMIs

! Limited parallelism

Object Consistency
– Accesses to different objects can happen out of order
– Uncovers fine-grained parallelism

! Accesses to different objects are concurrent
! Potential gain in scalability

– Can be made default for specific computational phases
Mixed Consistency

– Use Object Consistency on select objects
! Selection of objects fit for this model can be:

" Elective – the application can specify that an object’s state does not depend on
others’ states.

" Detected – if it is possible to assert the absence of such dependencies

– Use Processor Consistency on the rest

RTS Executor

Customized task scheduling
– Executor maintains a ready queue (all tasks for which dependencies

are satisfied in the DDG)
– Order tasks from the ready queue based on a scheduling policy (e.g.

round robin, static block or interleaved block scheduling, dynamic
scheduling …)

– The RTS decides the policy, but the user can also specify it himself
– Policies can differ for every pRange

Customized load balancing
– Implement load balancing strategies (e.g. work stealing)
– Allow the user to choose the strategy
– K42 : generate a customized work migration manager

RTS Synchronization

! Efficient implementation of synchronization primitives is crucial
– One of the main performance bottlenecks in parallel computing
– Common scalability limitation

Fence
– Efficient implementation using a novel Distributed Termination

Detection algorithm
Global Distributed Locks

– Symmetrical implementation to avoid contention
– Support for logically recursive locks (required by the compositional

SmartApps framework)
Group-based synchronization

– Allows efficient usage of ad-hoc computation groups
– Semantic equivalent of the global primitives
– Scalability requirement for large-scale systems

Productivity

! Implicit parallelism
! Implicit synchronizations/communications
! Composable (closed under composition)
! Reusable (library)
! Tunable by experts (library not language)
! Compiles with any C++ compiler (GCC)
! Optionally exposes machine info.
! Shared Memory view for user
! High level of abstraction – Generic Programming

Performance

! Latency reduction: Locales , data distribution
! Latency Hiding: RMI, multithreading, Asynch

Communications
! Optionally exposes machine info.
! Manually tunable for experts
! Adaptivity to input and machine (machine learning)

Portability

! Library – no need for special compiler
! RTS needs to be ported – not much else
! High level of abstraction

References
Cilk

http://supertech.csail.mit.edu/cilk/
http://supertech.csail.mit.edu/cilk/manual-5.4.3.pdf
Dag-Consistent Distributed Shared Memory,

Blumofe, Frigo, Joerg, Leiserson, and Randall, In 10th International
Parallel Processing Symposium (IPPS '96), April 15-19, 1996,
Honolulu, Hawaii, pp. 132-141.

TBB
http://www.intel.com/cd/software/products/asmo-na/eng/294797.htm
TBB Reference Manual – provided with package
http://idfemea.intel.com/2006/prague/download/SShah_IDF_Keynote_2

006-10-03_v1.pdf
STAPL

http://parasol.tamu.edu/groups/rwergergroup/research/stapl/

References
! HPF

– HPFF Homepage - http://hpff.rice.edu/
– High Performance Fortran: history, overview and current

developments. H Richardson, Tech. Rep. TMC-261, Thinking
Machines Corporation, April 1996.

– http://www.nbcs.rutgers.edu/hpc/hpf{1,2}/
! Chapel

– http://chapel.cs.washington.edu/
– Chapel Draft Language Specification.

http://chapel.cs.washington.edu/spec-0.702.pdf
– An Introduction to Chapel: Cray's High-Productivity Language.

http://chapel.cs.washington.edu/ChapelForAHPCRC.pdf

References

! Fortress
– http://research.sun.com/projects/plrg

– Fortress Language Specification.
http://research.sun.com/projects/plrg/fortress.pdf

– Parallel Programming and Parallel Abstractions in Fortress. Guy Steele.
http://irbseminars.intel-research.net/GuySteele.pdf

! Stapl
– http://parasol.tamu.edu/groups/rwergergroup/research/stapl

– A Framework for Adaptive Algorithm Selection in STAPL, Thomas,
Tanase, Tkachyshyn, Perdue, Amato, Rauchwerger, In Proc. ACM
SIGPLAN Symp. Prin. Prac. Par. Prog. (PPOPP), pp. 277-288, Chicago,
Illinois, Jun 2005.

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models
! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models
! PGAS Languages

– UPC
– X10

! Other Programming Models

UPC

! Unified Parallel C
! An explicit parallel extension of ISO C
! A partitioned shared memory parallel

programming language
! Similar to the C language philosophy

– Programmers are clever

Adapted from http://www.upc.mtu.edu/SC05-tutorial

http://www.upc.mtu.edu/SC05-tutorial

Execution Model
! UPC is SPMD

– Number of threads specified at compile-time or run-
time;

– Available as program variable THREADS
– MYTHREAD specifies thread index (0..THREADS-1)

! There are two compilation modes
– Static Threads mode:

! THREADS is specified at compile time by the user
! THREADS as a compile-time constant

– Dynamic threads mode:
! Compiled code may be run with varying numbers of threads

UPC is PGAS

! The languages share the global address space
abstraction
– Programmer sees a single address space
– Memory is logically partitioned by processors
– There are only two types of references: local and remote
– One-sided communication

Shared

G
lo

ba
l

ad
dr

es
s

sp
ac

e

X[0]

Private

ptr: ptr: ptr:

X[1] X[P]

Thread0 Thread1 ThreadP

Hello World
! Any legal C program is also a legal UPC program
! UPC with P threads will run P copies of the program.
! Multiple threads view

#include <upc.h> /* UPC extensions */
#include <stdio.h>

main() {
printf("Thread %d of %d: hello UPC
world\n", \

MYTHREAD, THREADS);
}

Private vs. Shared Variables
! Private scalars (int A)
! Shared scalars (shared int B)
! Shared arrays (shared int Vec[TREADS])
! Shared Scalars are always in threads 0 space
! A variable local to a thread is said to be affine to that thread

Shared

G
lo

b
a
l
a
d

d
re

s
s

s
p

a
c

e

Private

Thread0 Thread1 Threadn

A: A: A:

Vec[0]:

B:

Vec[n]:Vec[1]:

where:

n=Threads-1

Data Distribution in UPC
! Default is cyclic distribution

– shared int V1[N]
– Element i affine to thread i%THREADS

! Blocked distribution can be specified
– shared [K] int V2[N]
– Element i affine to thread (N/K)%THREADS

! Indefinite ()
– shared [0] int V4[4]
– all elements in one thread

! Multi dimensional are linearized according to C
layout and then previous rules applied

Work Distribution in UPC

! UPC adds a special type of loop
upc_forall(init; test; loop; affinity)

statement;

! Affinity does not impact correctness but only
performance

! Affinity decides which iterations to run on each
thread. It may have one of two types:
– Integer: affinity%THREADS is MYTHREAD
– E.g., upc_forall(i=0; i<N; i++; i)
– Pointer: upc_threadof(affinity) is MYTHREAD
– E.g., upc_forall(i=0; i<N; i++; &vec[i])

#define N 4
#define P 4
#define M 4
// Row-wise blocking:
shared [N*P/THREADS] int a[N][P], c[N][M];
// Column-wise blocking:
shared[M/THREADS] int b[P][M];

void main (void) {
int i, j , l; // private variables

upc_forall(i = 0 ; i<N ; i++; &c[i][0])
for (j=0 ; j<M ;j++) {
c[i][j] = 0;
for (l= 0 ; l<P ; l++)
c[i][j] += a[i][l]*b[l][j];

}
}

UPC Matrix Multiply

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

Replicating b among processors
would improve performance

Synchronization and Locking

! Synchronization
– Barrier: block until all other threads arrive

! upc_barrier
– Split-phase barriers

! upc_notify this thread is ready for barrier
! upc_wait wait for others to be ready

! Locks: upc_lock_t
– Use to enclose critical regions

! void upc_lock(upc_lock_t *l)
! void upc_unlock(upc_lock_t *l)

– Lock must be allocated before use

Collectives

! Must be called by all the threads with same
parameters

! Two types of collectives
– Data movement: scatter, gather, broadcast,…
– Computation: reduce, prefix, …

! When completed the threads are synchronized
! E.g.,
res=bupc_allv_reduce(int, in, 0, UPC_ADD);

Type Input Thread Operation

UPC Pointers

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to

shared space */

Shared

G
lo

ba
l

ad
dr

es
s

sp
ac

e

Private

p1:

Thread0 Thread1 Threadn

p2:

p1:

p2:

p1:

p2:

p3:

p4:

p3:

p4:

p3:

p4:

• Pointers-to-shared are more costly to dereference

• The use of shared pointers to local memory are discouraged

Memory Consistency
! UPC has two types of accesses:

– Strict: Will always appear in order
– Relaxed: May appear out of order to other threads

! There are several ways of designating the type,
commonly:
– Use the include file:

#include <upc_relaxed.h>

– All accesses in the program unit relaxed by default
– Use strict on variables that are used as

synchronization (strict shared int flag;)
data = … while (!flag) { };
flag = 1; … = data; // use the data

Additional Features

! Latency management: two levels of
proximity exposed to the user

! Portability: UPC compilers are available
for many different architectures

! Productivity: UPC is a low-level language,
the main objective is performance

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models
! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models
! PGAS Languages

– UPC
– X10

! Other Programming Models

X10

! Developed by IBM as part of DARPA HPCS

! Draws from Java syntax and arrays in ZPL

! Partitioned Global Address Space (PGAS)

! Clocks - generalized barrier synchronization

! Constructs for explicit data and work placement

Adapted from presentations at: http://x10.sourceforge.net/tutorial/presentations

The X10 Model

Place - collection of resident
activities & objects
(e.g., SMP node of cluster).

Activities - lightweight thread
of execution.

Locality Rule
Access to data must be
performed by a local activity.
Remote data accessed by
creating remote activities

Ordering Constraints (Memory
Model)

Locally Synchronous:
Guaranteed coherence for local heap.
Strict, near sequential consistency.

Globally Asynchronous:
No ordering of inter-place activities.
Explicit synchronization for coherence.

The X10 Model
Execution Model
! Explicit data parallelism, foreach
! Explicit task parallelism future, async

! Explicit, asynchronous, one-sided communication with future
! Explicit synchronization

– clock, finish, future, atomic section (within a place)

! Multi-level memory model under development
– Within a place - more strict, not quite sequential consistency

– Across places - relaxed, explicit synchronization required

X10 - Regions

! Defines a set of points (indices)
– Analogous to Chapel domains
– User defined regions in development

X10 - Distributions

! Maps every point in a region to a place
– Analogous to Chapel distributed domains
– User distributions regions in development

dist D1 = dist.factory.constant(R, here);//maps region R to local place
dist D2 = dist.factory.block(R); //blocked distribution
dist D3 = dist.factory.cyclic(R); //cyclic distribution
dist D4 = dist.factory.unique(); //identity map on [0:MAX_PLACES-1]

double[D] vals;
vals.distribution[i] //returns place where ith element is located.

X10 - Data Parallelism

[finish] foreach(i : Region) S
Create a new activity at place P for each point in Region
and execute statement S. Finish forces termination
synchronization.

public class HelloWorld2 {

public static void main(String[] args) {

foreach (point [p] : [1:2])

System.out.println("Hello from activity " + p + "!");

}

}

X10 - Data Parallelism

[finish] ateach(i : Distribution) S
Create a new activity at each point in Region at the place
where it is mapped in the Distribution. Finish forces
termination synchronization.

public class HelloWorld2 {

public static void main(String[] args) {

ateach (place p: dist.factory.unique(place.MAX_PLACES))

System.out.println("Hello from place " + p + "!");

}

}

X10 - Task Parallelism

[finish] async(P) S
Create a new activity at place P, that executes statement S.
//global array
double a[100] = …;
int k = …;

async (3) {
// executed place 3
a[99] = k;

}

//continue without waiting

//global array
double a[100] = …;
int k = …;

finish async (3) {
// executed place 3
a[99] = k;

}

//wait for remote completion

X10 - Task Parallelism

future(P) S
Similar to async, returns result from remote computation.

// global array
final double a[100] = …;
final int idx = …;

future<double> fd =
future (3)
{
// executed at place 3
a[idx];

};

int val = fd.force(); //wait for fd
completion

X10 - Synchronization

! Atomic block
– conceptually executed in a single step while other

activities are suspended
– must be nonblocking, no task spawning

(e.g., no communication with another place)

// push data onto concurrent
// list-stack
Node node = new Node(data);
atomic {

node.next = head;
head = node;

}

X10 - Synchronization

! Clocks
– Generalization of barrier

! Defines program phases for a group of activities
! Activities cannot move to next phase until all have

acquiesced with a call to next

– Activities can register with multiple clocks
– Guaranteed to be deadlock free
– next, suspend, resume, drop

X10 - Synchronization
final clock c = clock.factory.clock();
foreach (point[i]: [1:N]) clocked (c) {

while (true) {
//phase 1
next;
//phase 2
next;
if (cond)

break;
} // while

} // foreach
c.drop();

X10 - Matrix Multiply
double[.] A = new double[D1]; //defined on Region R1
double[.] B = new double[D2]; //defined on Region R2
double[.] C = new double[D3]; //defined on Region R3
...
finish ateach(point ij : D3) {

for(point k : R1[1]) {
point idx1 = new point(ij[0],k);
point idx2 = new point(k, ij[1]);
future<double> a(A[idx1].location) {A[idx1];}
future<double> b(B[idx2].location) {B[idx2];}
C[i] += a.force() * b.force();

}
}

X10 - Productivity

! New programming language based on Java
! Abstraction

– Relatively low for communication and synchronization
– Transparency was a design goal

! Component reuse
– Java style OOP and interfaces
– Generic types and type inference under development

X10 - Productivity

! Tunability
– Implementation refinement via Distributions and work placement

! Defect management
– Reduction with garbage collection
– Detection and removal with integration with Eclipse toolkit

! Interoperability
– C library linkage supported, working on Java

X10 - Performance

! Latency Management
– Reducing

! Data placement - distributions.
! Work placement - ateach, future, async

– Hiding
! Asynchronous communication with future
! Processor virtualization with activities

! Load Balancing
– Runtime can schedule activities within a place

X10 - Portability

! Language based solution, requires compiler

! Runtime system not discussed. Must handle threading

and communication - assumed to be part of model
implementation

! places machine information available to programmer

! Parallel model not effected by underlying machine

! I/O not addressed in standard yet

References

! UPC
– http://upc.gwu.edu/
– http://www.upc.mtu.edu/SC05-tutorial

! X10
– http://domino.research.ibm.com/comm/researc

h_projects.nsf/pages/x10.index.html
– http://x10.sourceforge.net/tutorial/presentations

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models
! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models
! PGAS Languages
! Other Programming Models

– Linda
– CnC
– MapReduce

Linda
! History

– Developed from 1992 by N. Carriero and D. Gelernter
– A Commercial version is provided by Scientific

Computing Associates, Inc.
– Variations: TSpace (IBM), JavaSpaces (SUN)

! Programming Style
– Processes creation is implicit
– Parallel processes operate on objects stored in and

retrieved from a shared, virtual, associative memory
(Tuple Space)

– Producer-Consumer approach

Adapted from http://www.lindaspaces.com/teachingmaterial/LindaTutorial_Jan2006.pdf

Linda
! Productivity

– Linda extends traditional languages (C, Java,…)
– The abstraction provided is intuitive for some class of

problems
– Object stored in the Tuple Space has a global scope:

the user have to take care of associates the right keys
! Portability

– Tuple Space has to be implemented
– Code analysis is architecture dependent
– If objects in the shared space contains references to

values a shared memory has to be provided

Linda

! Performance
– Depends on Tuple Space implementation

! Architecture is hidden to the user

– Code analysis can provide optimizations

! Defect analysis
– Commercial implementation provides

debuggers and profilers

Tuple Space

! A Tuple is a sequence of typed fields:
! (“Linda”, 2, 32.5, 62)
! (1,2, “A string”, a:20) // array with size
! (“Spawn”, i, f(i))

! A Tuple Space is a repository of tuples
! Provide:

! Process creation
! Synchronization
! Data communication
! Platform independence

Linda Operations (read)

! Extraction
– in(“tuple”, field1, field2);

! Take and remove a tuple from the tuple space
! Block if the tuple is not found

– rd(“tuple”, field1, field2);
! Take a tuple from the space but don’t remove it
! Block if the tuple is not found

– inp, rdp: as in and rd but non-blocking

Linda Operations (write)
! Generation

– out(“tuple”, i, f(i));
! Add a tuple to the tuple space
! Arguments are evaluated before addition

– eval(“tuple”, i, f(i));
! A new process compute f(i) and insert the

tuple as the function returns
! Used for process creation

Tuple matching
! Tuples are retrieved by matching

– out(“Hello”, 100)
– in(“Hello”, 100) // match the tuple
– in(“Hello”, ?i) // i=100

! Tuples matching is non-deterministic
– out(“Hello”, 100)
– out(“Hello”, 99)
– in(“Hello”, ?i) // i=99 or i=100

! Tuple and template must have the same number
of fields and the same types

Atomicity

! The six Linda operations are atomic
– A simple counter
in(“counter”, ?count);
out(“counter”, count+1);

– The first operation remove the tuple gaining
exclusive access to the counter

– The second operation release the counter

Hello world
linda_main(int i) {

out("count", 0);
for(int i=1; i<=NUM_PROCS; i++)

eval("worker",hello_world(i));
in("count", NUM_PROCS);
printf("All processes done.\n");

}

void hello_world (int i) {
int j;
in("count", ?j); out("count", j+1);
printf("Hello world from process %d,", i);
printf(" count %d\n", j);

}

Matrix Multiply
for(int i=0; i<M; ++i) {
for(int k=0; k<L; ++k) {
for(int j=0; j<N; ++j) {
C[i][j] =

A[i][k]*B[k][j];
}

}
}

A parallel specification:
Cij is the dot-product of row
i of A and column j of B

Matrix Multiply in Linda
Void // Compute C=A*transpose(B)
matrix_multiply(double A[m][n],B[l][n],C[m][l]) {

for (int i=0; i < m; i++) // Spawn internal products
for (int j=0; i < l; j++) {

ID = i*n + j;
eval("dot", ID, \

dot_product(&A[i], &B[j], ID));
}

for (int i=0; i < n; i++) // Collect results
for (int j=0; j < n; j++) {

ID = i*n + j;
in("dot", ID, ?C[i][j]);

}
}

Matrix Multiply in Linda (2)
double dot_product(double A[n],\

double B[n], int ID) {
// ID is not used in the
// sequential version of dot_product
double sum=0;
for (int i=0; i<m; i++)

sum += A[i]*B[i];
return sum;

}

Parallel dot-product
double dot_product(double *A, double *B, int ID) {

double p;
for (int i=0 ; i < m ; i++)

eval("p-dot", ID, p_prod(A,B,i*(n/m),(n/m)));
sum = 0;
for (int i=0 ; i < m ; i++) {

in("p-dot", ID, ?p);
sum += p ;

}
return sum ;

}
double p_prod(double *A,double *B,int start, int len) {

double sum = 0;
for (int i=start; i < len+start; i++)

sum += A[i]*B[i];
return sum;

}

Nested Parallelism

! Matrix multiply uses nested parallelism
! Tuples of dot_product have the same

types as tuples in matrix_multiply but they
have a different string identifier
– (“dot”, int, double*)
– (“p-dot”, int, double*)

! Correctness is guaranteed by ID and
commutativity of addition

Runtime
! Tuple rehashing

– Runtime observe patterns of usage, remaps tuple to
locations
! Domain decomposition
! Result tuples
! Owner compute

! Long fields handling
– Usually long fields are not used for mathcing
– Bulk transfer

! Knowing implementation and architecture details
and helps in optimizing user code

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models
! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models
! PGAS Languages
! Other Programming Models

– Linda
– CnC (Intel)
– MapReduce

Intel Concurrent Collections
l Parallel language
l Separating the concerns of

l Domain-expert - semantics of the application
l Tuning-expert - performance.

l Specifies mechanisms for composing of
building blocks

l Building blocks are specified in C++

CnC – the Big Idea
l Separation between

l Program developer
l Runtime/compilation support

Picture from The Concurrent Collections (CnC) Parallel Programming Model – Foundations and
Implementation Challenges - Kathleen Knobe, Vivek Sarkar

CnC – the General View
l Similar to streaming languages

l Implementation of building blocks (steps) is
independent of the application graph

l Steps are stateless and mutually independent

l Different from streaming languages
l Arbitrary (user defined) execution (no FIFO)
l Order Defines control (tag matching)

Intel CnC Model

! Execution Model
– Implicitly parallel for domain expert
– Race free – computation based on values
– Performing computations based on matching

tags and (item, tag) pairs
– Unordered execution on tags sets

Intel CnC Model
! Productivity

– Higher level operators and data structures
– Expressing the computation in any serial programming language

! Intel Concurrent Collections for C++
! Rice Concurrent Collections for Java
! Rice Concurrent Collections for .Net

– Can be used with Visual Studio with Visual Studio Debugger
– Provide Tracing Utility

! Performance
– Leaving tuning to the tuning expert (person or program)

CnC Model

! Portability
– Independent of

the underlying
architecture

– Targets shared
memory
systems

Picture from The Concurrent Collections (CnC) Parallel Programming Model – Foundations and Implementation
Challenges - Kathleen Knobe, Vivek Sarkar

CnC - Constructs
l A CnC program consists of

l Steps
- computation that can run in parallel computation
- C++ code

l Items – inputs and outputs to/from each step
l Tags – determining instances of steps or items

l Determines which steps can run in parallel
l Relieves ordering

CnC - Notation

Picture from The Concurrent Collections (CnC) Parallel Programming Model – Foundations and Implementation
Challenges - Kathleen Knobe, Vivek Sarkar

CnC – Relationship
l Consumer – items are input to a step
l Producer – a step creates tags or items
l Prescription – determines the number of times a step will

run
Two types of ordering

l Producer/consumer – data-ordering
l Controller/controllee – control-ordering

CnC – Fibonacci Example

//the program receives a number of tags from the environment
<long m_tags>
env -> <m_tags>

//the compute step will receive inputs and tags of type long, respectively,
//and will produce a long elements.

//Remember that fib_step should be implemented in C++ by the user
[long m_fibs <long>]
<m_tags> :: (fib_step)
[m_fibs] -> (fib_step) -> [m_fibs];

//the program will send the results to the environment (main function)
[m_fibs] -> env;

l First step – building the graph
l tags, steps, and inputs relations

CnC – Fibonacci Example
! Works almost sequentially – due to dependencies
! Tags are created in main function [0, 1, …, n] for fib(n)

m_fibs fib_step

env

env

int fib_step::execute(const long & tag)
const{

switch(tag) {
//the first two numbers
case 0 : m_fibs.put(tag, 0); break;
case 1 : m_fibs.put(tag, 1); break;
//for the rest
default :

//get from m_fibs two previous no.
long f_1; m_fibs.get(tag - 1, f_1);
long f_2; m_fibs.get(tag - 2, f_2);
m_fibs.put(tag, f_1 + f_2);

}
}

m_tags

CnC – Another Example: Face
Recognition - Parallel
l Applying a set of filters on an blocks of an image

l Each step detects nose, eyes, … and removes blocks from the next step

Image from CnC Tutorial

CnC - Summary
l Expressing program in terms of higher level and

domain specific operators and data types
l Single Assignment rule (analogous to streaming)
l Based on data and control dependences
l Race free
l Platform independent

MapReduce

! Used by Google for production software
! Used on 1000s processors machines
! Automatic parallelization and distribution
! Fault-tolerance
! It is a library built in C++

Adapted From: http://labs.google.com/papers/mapreduce.html

MapReduce Model
! Input & Output are sets of key/value pairs
! Programmer specifies two functions:

– map(in_key, in_value) -> list(out_key,
intermediate_value!
! Processes input key/value pair
! Produces set of intermediate pairs

– reduce(out_key,
list(intermediate_value)) ->
list(out_value)
! Combines all intermediate values for a particular key
! Produces a set of merged output values (usually just one)

Example: Word Count
map(String input_key, String input_value):

// input_key: document name
// input_value: document contents
for each word w in input_value:

EmitIntermediate(w, "1");

reduce(String output_key, Iterator
intermediate_values):
// output_key: a word
// output_values: a list of counts
int result = 0; for each v in
intermediate_values: result += ParseInt(v);
Emit(AsString(result));

Sequential Execution Model

Parallel Execution Model

Shuffling
& Sorting

Parallel Execution Model

! Fine granularity tasks: many more map
tasks than machines

! Minimizes time for fault recovery
! Can pipeline shuffling with map execution
! Better dynamic load balancing
! Often use 200,000 map/5000 reduce tasks

w/ 2000 machines

Performance

! Typical cluster:
– 100s/1000s of 2-CPU x86 machines, 2-4 GB of

memory
– Limited bisection bandwidth
– Storage is on local IDE disks
– distributed file system manages data (GFS)
– Job scheduling system: jobs made up of tasks,

scheduler assigns tasks to machines

Performance: Locality
! Master scheduling policy:

– Asks GFS for locations of replicas of input file blocks
– Map tasks typically split into 64MB (GFS block size)
– Map tasks scheduled so GFS input block replica are

on same machine or same rack
! Effect: Thousands of machines read input at

local disk speed
! Without this, rack switches limit read rate

Performance: Replication
! Slow workers significantly lengthen completion

time
– Other jobs consuming resources on machine
– Bad disks with soft errors transfer data very slowly
– Weird things: processor caches disabled (!!)

! Solution: Near end of phase, spawn backup
copies of tasks
– Whichever one finishes first "wins"

! Effect: Dramatically shortens job completion time

Performance

! Sorting guarantees within each reduce
partition

! Compression of intermediate data
! Combiner: useful for saving network

bandwidth

Fault Tolerance

! On worker failure:
– Detect failure via periodic heartbeats
– Re-execute completed and in-progress map tasks
– Re-execute in progress reduce tasks
– Task completion committed through master

! Master failure not handled yet
! Robust: lost 1600 of 1800 machines once, but

finished fine

Productivity

! User specifies only two functions
! May be complex to specify a general

algorithm
! Highly productive for specific kind of

problems

References
! Linda

– http://www.lindaspaces.com/about/index.html
– http://www.almaden.ibm.com/cs/TSpaces/
– http://java.sun.com/developer/technicalArticles/tools/JavaSpaces/

! MapReduce
– http://labs.google.com/papers/mapreduce.html
– http://www.cs.virginia.edu/~pact2006/program/mapreduce-

pact06-keynote.pdf
! CnC

– http://software.intel.com/en-us/sites/whatif/runtime_api/index.html

http://www.cs.virginia.edu/~pact2006/program/mapreduce-pact06-keynote.pdf

Table of Contents
! Introduction to Parallelism
! Introduction to Programming Models
! Shared Memory Programming
! Message Passing Programming
! Shared Memory Models
! PGAS Languages
! Other Programming Models

– Linda
– MapReduce
– Streaming

MATLAB DCE

! Executing independent jobs in a cluster
environment

! A job is a set of tasks
! A task specifies input data and operations

to be performed
! A scheduler takes a job and executes its

tasks

Execution Model

Scheduler

Client

Client

Worker

Worker

Worker

Worker

Job

Job

All Results

All Results

Task

Task

Task

Task

Results

Results

Results

Results

Job Creation and Execution
! Create a Scheduler: sched =

findResource('scheduler', 'type', 'local')
! Create a Job: j = createJob(sched);
! Create Tasks

– createTask(j, @sum, 1, {[1 1]});
– createTask(j, @sum, 1, {[2 2]});

! Submit job: submit(j);
! Get results

– waitForState(j);
– results = getAllOutputArguments(j)

results =
[2]
[4]

! Destroy job: destroy(j);

Number of output
arguments

Portability

! Different ways to pass data to workers
– Passing paths for data and functions when

using a shared file system
– Compressing and passing data and functions

to workers initializing an environment at
worker place

! The first way is less portable even though
more efficient

Productivity

! MATLAB DCE is a queuing system
! Schedule independent jobs
! It may be difficult to code an arbitrary

parallel algorithm
! Good for speeding up huge computation

with very high level independent tasks

References
! Linda

– http://www.lindaspaces.com/about/index.html
– http://www.almaden.ibm.com/cs/TSpaces/
– http://java.sun.com/developer/technicalArticles/tools/JavaSpaces/

! MapReduce
– http://labs.google.com/papers/mapreduce.html
– http://www.cs.virginia.edu/~pact2006/program/mapreduce-

pact06-keynote.pdf
! MATLAB DCE

– http://www.mathworks.com/products/distriben/
– http://www.mathworks.com/products/distribtb/

Streaming and GPUs
l Most of the streaming languages focus on

GPUs
l GPUs – Graphics Processing Unit

l Suitable for intensive data-parallel apps
l Cheap < 1000$ for TeraFLOPS computation

power
l Previously used only for projecting images on

2D planes
l Now used for General Purposes → GPGPUs

But why GPUs?
l In 2010 – NVIDIA Tesla S1070 delivers up to

l 4.14 TFLOPS Single precision
l 408 GB/sec memory bandwidth

Graph from - CUDA Programming Guide 3.0

CPU vs. GPU
! CPU

– Does more than computing
! Branch prediction
! Caching
! Address translation (TLB,

protection)
! …

! GPU
– compute-intensive
– Focuses on

! data-parallel computations
! With high

computation/memory access
ratio

– highly parallel computation
– more transistors for computation

Picture from - CUDA Programming Guide 3.0

GPU Architecture
l Based on the concept of 3D models

l 3D models are made of triangles
l Vertices and legs

l GPUs has 3 steps in a pipeline to convert 3D to
2D
l Vertex Shaders - projecting vertices to pixels
l Geometry Shaders - generating legs for triangles

and producing pixels for the legs (Rasterizing)
l Fragment (Pixel) Shaders - determining colors of

each pixel

GPU Architecture

Picture from - An Introduction to Modern GPU Architecture by Ashu Rege

Modern GPU Architecture
l A farm of unified processors (shaders)
l Replacing the pipeline architecture
l Each shader

l Receives input
l Performs an action (making pixels,

rasterizing, ...)
l Produces output

Modern GPU Architecture
l GeForce 8800 GTX (G80)

Picture from - An Introduction to Modern GPU Architecture by Ashu Rege

Streaming - Definition

! What is streaming?
– Continuous input data
– Processed by a set of filters (also called

kernels, or streams)
– Continuous output data

1 0 3 … 7 3 5 12 1 5 … 19 4 3

Streaming: Application Domain
l Audio & video streaming
l Digital signal processing
l Networking and encryption, etc.

l Examples:
l Consumer electronics (Audio, Video, Bluetooth, etc.)
l Embedded systems (Encryption and networking)
l Videocards (Video)

Streaming: A Closer Look
l Program representation: data-flow graph

l Collection of filters
l Connected to each other using streaming

channels
l Called filter graph or stream graph

1 0 3 … 7 3 5 12 1 5 … 19 4 3

Program

filter m

filter p.n

filter p.1

filter zfilter1

Streaming Characteristics
l Data-intensive
l Continuous (infinite) data inputs – data streams
l Typically

l Data with the same type
l With low re-usability

l Consists of active windows – covering current data and the
processed data

… 1 0 3 … 7 3 5 12 1 5 … 19 4 3 …

Program

filter m

filter p.n

filter p.1

filter zfilter1

Active window

Infinite data streams

Streaming Characteristics
l Parallelism

l Data parallelism
l Task parallelism
l Pipeline parallelism

l Communication
l Producer-consumer locality
l Predictable memory access pattern
l No read-write hazards

l A lot like vector machines

Slide contents from - Stream Programming Environments by Pat Hanrahan 2004

Streaming Based Languages
l Lucid (1974)

l The first data-flow and streaming language

l StreamIt from MIT
l BrookGPU for GPUs from Stanford

l And many other languages and standards: StreamC,
OpenCL, FastFlow, etc.

StreamIt
l Is a programming language and

a compilation infrastructure for
streaming

l Addresses both performance
improvement and ease of
programmability

l Properties
l Composable filters (white box)
l Teleport messaging for events –

later in the slides
l The ability to operate directly on

compressed data streams
l Based on Cyclo-static Dataflows

(next slide)

Cyclo-Static Dataflow
! Basic dataflow

– both consumption and production
rate are always 1

! Synchronous dataflow
– consumption and production rate

are known
! Cyclo-static dataflow

– consumption and production rate
change cyclically on known
numbers

! All of the above allow static
scheduling of a dataflow graph

actor
1 1

actor
5 4

actor
[1, 4, 6] [2, 0. 3]

More about StreamIt
l High-level architecture independent language
l Backends for uni/multi processors
l Static scheduling (CSDF)
l Based on structured graphs
l Providing different levels of parallelism

l Data – duplicating coarse grained
data parallel units (fusing DOALL steps)
l Task – split-join
l Pipeline – using software pipelining

Programming in StreamIt
l Top-down approach
l Decomposing the application to autonomous unit of

computation – filters
l Filters use FIFO communication channel
l Uses three constructs to connect filter:

pipeline

splitter joiner

split-join

joiner body splitter

feedback-loop

loop

StreamIt Splitters and Joiners
! Splitters

– Duplicate – copies each input item to
each output channel

– Roundrobin
! Annotated with weights (w1, w2, …, wn)
! n = number of output channels
! Puts the first w1 elements on the first

channel, w2 on the second, ..., and wn
on the last channel

! Joiners
– Only roundrobin joiner

! Annotated with weights (w1, w2, …, wn)
! n = number of input channels
! Receives the first w1 elements from the

first channel, w2 from the second one,
..., and wn from the last channel

Duplicate splitter

Roundrobin splitter (2,1, 3)

… 1 3 5 7 3 5

5

5

… 1 3 5 7 3 5

3 5

7

1 3 5

Roundrobin joiner (1,1, 4)

3

3 8 7 1 2 4 …8

7 1 2 4

Teleport Messaging
l The idea

l Sending messages outside of the normal stream of data
l Example – radio application

l Request for change listening frequency (infrequent event)
l Detected by filter late in the application
l Require a change by a filter early in the application
l Solution – teleport messaging
l Affects data computation
l Does not violates static scheduling

Some StreamIt Characteristics
! Execution Model

– Explicitly parallel
– Dynamic rates – only as [min..max] ranges (still

statically schedulable)
– Single-input stream and single-output stream filters
– Teleport messaging – out-of-band control messages
– Peeking – reading data without popping it from the

stream
– Nested parallelism support – nested filters
– Filters have private and independent address space

StreamIt
! Productivity

– A new language – based on streaming semantics
– Compiler produces streaming graphs showing the application
– High level of abstraction – using streaming semantics
– User level tunability

! Compiler can produce C or C++ codes from the program

! User can modify those files before final compilation

– Composability supported by nesting filters

! Performance
– Load balancing

! Compiler finds the best combination of data, task, pipeline parallelism

! Using fission and fusion

– Using teleport messaging (asynchronous control messages) instead of
feedback loop

! 49% improvement for a software radio benchmark

StreamIt: Portability

– Compiler can compile to C or C++ sources
! Can be compiled on different platforms along with

StreamIt runtime library

– No reliance on system feature – StreamIt
runtime handles everything

– Targeting parallelism on multicores

Hello World Example
l Printing numbers

l Components:
l IntSource creates

elements
l Printer prints the

elements
l HelloWorld connects

these two filters using a
pipeline

void->int filter IntSource {
int x;
init {

x = 0;
}
push(x++);

}

int->void filter IntPrinter {
println(pop());

}

void->void pipeline HelloWorld {
add IntSource();
add IntPrinter();

}

Visual Representation
l StreamIt compiler produces several graphs for an application
l One is the application graph

void->int filter IntSource {
int x;
init {

x = 0;
}
push(x++);

}

int->void filter IntPrinter {
println(pop());

}

void->void pipeline
HelloWorld {

add IntSource();
add IntPrinter();

}

A More Concrete Example:
Fibonacci Code
! Note that roundrobin(0,1) means that the actor will only use the value from

identity (the arrow coming to the loop is not shown)

void->void pipeline Fib {
add feedbackloop {

join roundrobin(0, 1);
body PeekAdd();
loop Identity<int>();
split duplicate;
enqueue 0; //entering the first two
enqueue 1; //numbers in the queue

};
add IntPrinter();

}

int->int filter PeekAdd {
push(pop() + peek(0)) ;

}

int->void filter IntPrinter {
println(pop());

}

StreamIt - Summary
l Based on stream graph (filter dependence

graph)
l No stream data type – data type should

match channel type
l Partial reconfiguration – letting the filters

replace themselves by an updated version
l Expressive & productive for streaming apps.
l Performance is good
l Needs and has good compiler

BrookGPU – Streaming Language
l Designed for streaming processors such as Merrimac (Streaming

Processor from Stanford) and GPUs

l Similar in terminology to other streaming languages
l Applies kernels on data streams

l Designed based on four goals
l Portability

l Performance

l Data parallelism

l Computational intensity

BrookGPU - Model
l Execution Model

l Can work on multiple graph
l Explicitly parallel
l Kernels accept

l Multi-dimensional streams
l And multiple inputs and outputs

l No nested call – flat dataflow
l No recursion – as to allow inter-procedural analysis and inlining
l Restricted pointer operation - allowing only pass by reference

to functions
l No memory allocation in the kernels

BrookGPU Model
! Productivity

– Extension of standard ANSI C with streaming
constructs

– High level of abstraction – suitable for streaming
application

– Composability and nested calls are not supported
– Multiple/multidimensional streams

! Performance
– Load balancing – Brook compiler does nothing for

load balancing
– Scalable parallelism

BrookGPU Model

! Portability
– Maps to various streaming architectures –

Merrimac (Stanford streaming
supercomputer), GPUs, etc.

– Free of any explicit graphics construct
! Works for NVIDIA and ATI hardware, and CPU

Brook Outline
.br

Brook source files

brcc
source to source compiler

brt
Brook run-time library

BrookGPU - Syntax
l Stream declarations

l float <> a – a stream of floats
l float <> b [2][3] – a stream of [2, 3] float arrays
l float <10> c – a stream of size 10 (size in <> used for

aligning purposes)
l float <100, 200, 300> d - a stream of size

100x200x300
l Matching stream sizes before function calls

l Example: sum of each 5 elements in the result
l float <20> a
l float <5> result
l sum (a, r) – function is shown in the next slide

Reduction in BrookGPU

! Two mechanisms
– Reduction operators – providing mechanism

for performing simple reductions on native

types with predefined operators (+, *, &, |)
– Reduction functions – allowing reductions

on complex data types and with user-

defined operators

BrookGPU – Reduction Variable
l Applying reduction using reduction

variables
l Perceived as a sequential operation
l Performed in any possible order

l Example showing both aligning and
reduction variables

for (int i = 0; i < 20; i++) {
result [i / 5] += a[i];

}

void kernel sum (float a<>, reduce float
result) {

result = result + a;
}
float <20> a;
float <5> result;
reduce_sum(a, r);

BrookGPU – Reduction
Function
l Applying reduction using both reduction

functions and reduction variables
l This example shows it for native types and

basic operators
l This reduction can be extended to complex

data types and operators

for (int i = 0; i < 100; i++) {
result += a[i];

}

void reduce sum (complex a<>, reduce
complex result) {

result = result + a;
}

complex <100> a;
reduce_sum(a);

BrookGPU - Summary
l Flat stream graph
l Stateless kernels
l Task parallelism by using kernels
l Data parallelism by using streams
l Static/Dynamic rate of consumption and

production determined by compiler/at runtime
l Controls are non-kernel part of the code in C

l Main function
l Dependency between kernels

Parallel Skeletons
l Skeletons term - by Murray Cole for the first time

l Many parallel apps have common interaction patterns
(pipeline, farm, …)

l Skeletons capture those common algorithmic forms
l Skeletons - building blocks for creating applications

l Benefits
l Higher level programming interface
l Allowing formal analysis
l Easier transformation of a program
l Allowing portable and efficient generic

implementations

Parallel Skeletons - Origin
l Inspired by functional programming paradigms
l Programs are based on two type of skeletons

l Algorithmic skeletons – a higher-order function
l Architectural skeletons – implementing the

paradigm on a target

l Benefits
l Hiding parallelism and communication details in

architectural skeletons
l Letting a programmer to focus on the algorithmic part

Homomorphic Skeletons
l Also called catamorphic skeletons
l Providing a more formal framework for

l Program construction
l Program transformation

l Defined for lists, arrays, trees and graphs
l Applicable to other datatypes only by defining new

operators

l Act similar to abstract data type
l Defining a set of parallel operators
l Hiding implementation details

Skeletons – Formal Definition
l Notations

l f a = f(a)
l f ∘ g a = f (g a)
l id ∘ f = f ∘ id = f
l [a1, ..., am] ++ [b1, ..., bn] = [a1, ..., am, b1, ..., bn]

l concatenation

l map f [a1, ..., am] = [f a1, ..., f am]
l red (⊛) [a1, ..., am] = a1 ⊛ a2 ⊛ … ⊛ am
l scan (⊛) [a1, ..., am] = [a1, a1 ⊛ a2, ..., a1⊛ … ⊛ am]
l suf (⊛) [a1, ..., am] = [a1 ⊛ … ⊛ am, …, a1 ⊛ a2, a1]

Homomorphic Skeletons -
Definition
l If a function is homomorphism on a list

l It is convertible to map and reduce
l Means - O(log n) if tree-based reduction is used

l A function h ∈ [A] → X is a list homomorphism w.r.t.
binary operator iff for any list l1 and l2:

h (l1 ++ l2) = (h l1) ⊛ (h l2)

l A function h on lists is a homomorphism w.r.t.
an associative operator ⊛ iff

h = red(⊛) ∘ map ϕ
Where ϕ a = h [a]

Homomorphic Representation
l Useful

l Converting the program to a map and a reduce phase
l Efficient implementation for map and reduce in many

parallel environments
l Problem

l Is useful only if the application is convertible to
homomorphic skeletons

l Even if it is convertible, conversion is hard, and consists of
many steps (example in the next slide)

l Solution
l Automatic extraction of homomorphic functions
l One possible solution – cons-snoc Method

Homomorphism Example -
Maximum Segment Sum (MSS)

l Algorithm – finding contiguous list segment with largest sum and
returning the sum

l Intuitive formal definition of mss (↑ is operator ‘max’)
mss = red(↑) ∘ map (red (+)) ∘ segs

l Converted to homomorphic representation
mss = (fst ∘ fst) ∘ red (⇑⥾(↑⥿+)) ∘ map(Δ ∘ Δ)

l In which
l Δ a = (a, a)
l fst (a, b) = a
l (a, b) ⇑ (c, d) = (a ↑ c, b ↑ d)
l ((r1, s1), (t1, u1)) ⇑⥾(↑⥿+) ((r2, s2), (t2, u2)) =

= ((r1 ↑ r2 ↑ (t1 + s2), s1 ↑ (u1 + s2)), (t2 ↑ (t1 + u2), u1 + u2))

l Problem – it is both hard to write and hard to understand

Automatic Extraction of
Homomorphism for Lists
l A function h ∈ [A] → X is a homomorphism iff it is both conslist and

snoclist homomorphism

l Notations
l ⤙ (cons) – attaches an element to the front of a list

a ⤙ l = [a] ++ l
l ⤚ (snoc) – attaches an element to the end of a list

l ⤚ a = l ++ [a]

l Function h ∈ [A] → X is a conslist homomorphism w.r.t. Φ ∈ [A] → X and
⊚∈ A х X → X if:
h [a] = Φ a
h (a ⤙ l) = a ⊚ (h l)

Automatic Extraction of
Homomorphism for Lists
l User should provide

l Cons representation of the program
l Snoc representation of the program

l CS (cons and snoc) method could provide
homomorphic representation

Patterns and skeletons for parallel and distributed computing By Fethi Rabhi, Sergei Gorlatch

Cons Program

Snoc Program

Generalization
Algorithm

Induction
Prover

Homomorphic
Representation

Hard to write not found not associative

Parallel Skeletons - Summary
l Useful

l For small algorithms and small applications
l Can be supported by formal proofs
l For MPI implementers to find better implementations

l Not practical for real-life parallel programs
l Gets complicated too soon

l Conclusion
l higher level of application abstraction is needed
l Like what happened to sequential programs – UML, LOP, AOP, etc.

Conclusions

! High level PPM – high productivity
! Low level PPM – high performance ?
! Safety in higher abstraction
! Needed: Parallel RTS, Debuggers
! Desperately Needed: Compilers
! Domain is in flux We shall see

