## Homework 1

Cryptography CS 598 : Spring 2016

Released: Thu Jan 21 Due: Tue Feb 2

## Exercise on Secret Sharing

[Total 25 pts]

1. Alice and Bob are given two integers x and y, respectively, both in the set  $\{0, ..., n\}$ . Devise a protocol (over private, point-to-point channels) among Alice, Bob and Carol, so that at the end of the protocol, Carol outputs x + y, but learns *nothing more* about x and y. That is,

$$\forall x_1, y_1, x_2, y_2 \in \{0, \dots, n\} \text{ s.t. } x_1 + y_1 = x_2 + y_2, \text{ View}_{Carol}(x_1, y_1) = \text{View}_{Carol}(x_2, y_2),$$

where  $View_{Carol}(x, y)$  denotes the distribution of the view of  $Carol^1$  in your protocol when Alice and Bob's inputs are x and y respectively. Also, we require that Alice and Bob learn *nothing* about each other's inputs:

$$\forall x, y_1, y_2 \in \{0, \dots, n\}, \text{ View}_{Alice}(x, y_1) = \text{View}_{Alice}(x, y_2),$$
  
 $\forall x_1, x_2, y \in \{0, \dots, n\}, \text{ View}_{Bob}(x_1, y) = \text{View}_{Bob}(x_2, y).$ 

You may assume that all three parties will follow your protocol honestly. Briefly argue that your protocol indeed satisfies all three secrecy conditions, and gives the correct output to Carol. [20 pts] (Hint: Use additive secret-sharing over a suitable finite group.)

2. The problem gets trivialized when any one of the 3 secrecy conditions are removed. Suggest 3 deterministic protocols for the above problem, when each of the three secrecy conditions is removed and only the other two are required.

[5 pts]

<sup>&</sup>lt;sup>1</sup>The view of a party consists of its input and the random coins used by it (if any), as well as all the messages received by it during the protocol.